MVG读书笔记——射影几何下的二次曲线

本文详细介绍了二次曲线的概念,包括双曲线、椭圆和抛物线等,并探讨了它们在齐次坐标下的表示方法及矩阵形式。此外,还讲解了二次曲线的切线、极线和退化情况,并引入了对偶二次曲线的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

双曲线、椭圆、抛物线等统称为二次曲线(或圆锥曲线),它其实是三维空间中圆锥在截面上的投影,如图

在这里插入图片描述

齐次坐标下的二次曲线表示

二次曲线的在欧氏空间的方程为
a x 2 + b x y + c y 2 + d x + e y + f = 0 ax^2+bxy+cy^2+dx+ey+f=0 ax2+bxy+cy2+dx+ey+f=0
即一个二次多项式。

使用齐次坐标表示为
a x 1 2 + b x 1 x 2 + c x 2 2 + d x 1 x 3 + e x 2 x 3 + f x 3 2 = 0 ax_1^2+bx_1x_2+cx_2^2+dx_1x_3+ex_2x_3+fx_3^2=0 ax12+bx1x2+cx22+dx1x3+ex2x3+fx32=0
使用矩阵形式表示为 x T C x = 0 x^TCx=0 xTCx=0
其中 C = [ a b / 2 d / 2 b / 2 c e / 2 d / 2 e / 2 f ] C=\begin{bmatrix}a&b/2&d/2\\b/2&c&e/2\\d/2&e/2&f\end{bmatrix} C=ab/2d/2b/2ce/2d/2e/2f
显然,一个二次曲线有5个自由度,5点确定一条二次曲线。

二次曲线的切线

二次曲线在其上一点x处的切线为 l = C x l=Cx l=Cx

极线

平面上任意一点和二次曲线可以定义一条直线 l = C x l=Cx l=Cx,这条直线称为x之于C的极线。x称为l之于C的极点。如图,
polar

过x作C的切线刚好落在极线上。

极线上满足 y T C x = 0 y^TCx=0 yTCx=0的点y称为x之于C的共轭点。相应的,x也在y之于C的极线上。

退化

可以看到二次曲线的矩阵表示实际上是一个二次型,当C不是满秩的时候,二次曲线发生退化。此时二次曲线的形状可能为两条(秩为2)或一条直线(秩为1)

一个退化为两条直线的二次曲线方程为 C = l m T + m l T C = lm^T+ml^T C=lmT+mlT。证明如下:

对l上的一点x,它满足 x T C x = ( x T l ) ( m T x ) + ( x T m ) ( l T x ) = 0 x^TCx=(x^Tl)(m^Tx)+(x^Tm)(l^Tx)=0 xTCx=(xTl)(mTx)+(xTm)(lTx)=0。故x在曲线C上。
##对偶二次曲线
之前讲到射影几何中点与直线具有对偶性。由此我们可以定义出二次曲线(或者叫点二次曲线)的对偶曲线,称为线二次曲线。正如点二次曲线是无数点的集合,线二次曲线是无数线的集合

我们还是可以用一个 3 × 3 3\times 3 3×3的对称矩阵来 C ∗ C^* C来表示它。 C ∗ C^* C为C的伴随矩阵。与线二次曲线相切的直线满足 l T C ∗ l = 0 l^TC^*l=0 lTCl=0。在满秩的情况下有 C ∗ = k C − 1 C^*=kC^{-1} C=kC1

线二次曲线可以很简单的由点二次曲线推导出来。由上面所说,点二次曲线C在x处点切线为l=Cx。相反的,我们可以得到C与直线l相切于 x = C − 1 l x=C^{-1}l x=C1l。于是由 x T C x = 0 x^TCx=0 xTCx=0我们得到 ( C − 1 l ) T C ( C − 1 l ) = l T C − 1 l = 0 (C^{-1}l)^TC(C^{-1}l)=l^TC^{-1}l=0 (C1l)TC(C1l)=lTC1l=0。即线二次曲线的方程。
dual conic
如图为一个对偶二次曲线的直观表示。它包住了点圆锥曲线所在的区域。

在退化情况下,一个对偶二次曲线可以由两点确定,即
C ∗ = x y T + y x T C^*=xy^T+yx^T C=xyT+yxT

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值