双曲线、椭圆、抛物线等统称为二次曲线(或圆锥曲线),它其实是三维空间中圆锥在截面上的投影,如图
齐次坐标下的二次曲线表示
二次曲线的在欧氏空间的方程为
a
x
2
+
b
x
y
+
c
y
2
+
d
x
+
e
y
+
f
=
0
ax^2+bxy+cy^2+dx+ey+f=0
ax2+bxy+cy2+dx+ey+f=0
即一个二次多项式。
使用齐次坐标表示为
a
x
1
2
+
b
x
1
x
2
+
c
x
2
2
+
d
x
1
x
3
+
e
x
2
x
3
+
f
x
3
2
=
0
ax_1^2+bx_1x_2+cx_2^2+dx_1x_3+ex_2x_3+fx_3^2=0
ax12+bx1x2+cx22+dx1x3+ex2x3+fx32=0
使用矩阵形式表示为
x
T
C
x
=
0
x^TCx=0
xTCx=0
其中
C
=
[
a
b
/
2
d
/
2
b
/
2
c
e
/
2
d
/
2
e
/
2
f
]
C=\begin{bmatrix}a&b/2&d/2\\b/2&c&e/2\\d/2&e/2&f\end{bmatrix}
C=⎣⎡ab/2d/2b/2ce/2d/2e/2f⎦⎤
显然,一个二次曲线有5个自由度,5点确定一条二次曲线。
二次曲线的切线
二次曲线在其上一点x处的切线为 l = C x l=Cx l=Cx
极线
平面上任意一点和二次曲线可以定义一条直线
l
=
C
x
l=Cx
l=Cx,这条直线称为x之于C的极线。x称为l之于C的极点。如图,
过x作C的切线刚好落在极线上。
极线上满足 y T C x = 0 y^TCx=0 yTCx=0的点y称为x之于C的共轭点。相应的,x也在y之于C的极线上。
退化
可以看到二次曲线的矩阵表示实际上是一个二次型,当C不是满秩的时候,二次曲线发生退化。此时二次曲线的形状可能为两条(秩为2)或一条直线(秩为1)
一个退化为两条直线的二次曲线方程为 C = l m T + m l T C = lm^T+ml^T C=lmT+mlT。证明如下:
对l上的一点x,它满足
x
T
C
x
=
(
x
T
l
)
(
m
T
x
)
+
(
x
T
m
)
(
l
T
x
)
=
0
x^TCx=(x^Tl)(m^Tx)+(x^Tm)(l^Tx)=0
xTCx=(xTl)(mTx)+(xTm)(lTx)=0。故x在曲线C上。
##对偶二次曲线
之前讲到射影几何中点与直线具有对偶性。由此我们可以定义出二次曲线(或者叫点二次曲线)的对偶曲线,称为线二次曲线。正如点二次曲线是无数点的集合,线二次曲线是无数线的集合
我们还是可以用一个 3 × 3 3\times 3 3×3的对称矩阵来 C ∗ C^* C∗来表示它。 C ∗ C^* C∗为C的伴随矩阵。与线二次曲线相切的直线满足 l T C ∗ l = 0 l^TC^*l=0 lTC∗l=0。在满秩的情况下有 C ∗ = k C − 1 C^*=kC^{-1} C∗=kC−1
线二次曲线可以很简单的由点二次曲线推导出来。由上面所说,点二次曲线C在x处点切线为l=Cx。相反的,我们可以得到C与直线l相切于
x
=
C
−
1
l
x=C^{-1}l
x=C−1l。于是由
x
T
C
x
=
0
x^TCx=0
xTCx=0我们得到
(
C
−
1
l
)
T
C
(
C
−
1
l
)
=
l
T
C
−
1
l
=
0
(C^{-1}l)^TC(C^{-1}l)=l^TC^{-1}l=0
(C−1l)TC(C−1l)=lTC−1l=0。即线二次曲线的方程。
如图为一个对偶二次曲线的直观表示。它包住了点圆锥曲线所在的区域。
在退化情况下,一个对偶二次曲线可以由两点确定,即
C
∗
=
x
y
T
+
y
x
T
C^*=xy^T+yx^T
C∗=xyT+yxT