Transformer-SVM组合模型多特征分类预测/故障诊断(Matlab实现)小样本故障诊断新思路

在Matlab中实现组合Transformer-SVM模型进行多特征分类预测和故障诊断可以为小样本故障诊断问题带来新的思路。以下是一个简化的示例代码框架,结合Transformer和SVM模型进行故障诊断的实现:

ini

复制
% 加载和准备数据(示例)
data = … % 加载特征数据
labels = … % 加载标签数据

% 数据预处理
% 这里假设数据已经进行了特征提取和预处理

% 划分训练集和测试集
cv = cvpartition(labels, ‘HoldOut’, 0.3);
trainIdx = training(cv); % 训练集索引
testIdx = test(cv); % 测试集索引

X_train = data(trainIdx, 😃;
Y_train = labels(trainIdx);

X_test = data(testIdx, 😃;
Y_test = labels(testIdx);

% Transformer模型
transformer_layers = [
fullyConnectedLayer(64)
reluLayer
fullyConnectedLayer(32)
reluLayer
fullyConnectedLayer(16)
];

% 训练Transformer模型
transformer_model = [
sequenceInputLayer(size(X_train, 2))
transformer_layers
fullyConnectedLayer(numel(unique(labels)))
softmaxLayer
classificationLayer
];

options = trainingOptions(‘adam’, …
‘MaxEpochs’, 50, …
‘MiniBatchSize’, 64, …
‘Plots’, ‘training-progress’);

transformer_net = trainNetwork(X_train, categorical(Y_train), transformer_model, options);

% 提取Transformer模型特征
transformer_features_train = activations(transformer_net, X_train, ‘transformer_layers’, ‘MiniBatchSize’, 64, ‘OutputAs’, ‘rows’);
transformer_features_test = activations(transformer_net, X_test, ‘transformer_layers’, ‘MiniBatchSize’, 64, ‘OutputAs’, ‘rows’);

% SVM模型
svm_model = fitcecoc(transformer_features_train, Y_train);

% 预测
Y_pred = predict(svm_model, transformer_features_test);

% 评估模型性能
accuracy = sum(Y_pred == Y_test) / numel(Y_test);
disp([‘准确率:’, num2str(accuracy)]);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值