RStudio的Source区(左上角1区,文本编辑框)

下面内容摘录自《用R探索医药数据科学》专栏文章的部分内容(原文8827字)。

2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示-CSDN博客

 一、Source区(左上角1区,文本编辑框)

这个区域主要用于撰写代码。刚启动时,可能看不到这个区域。可以点击左上角的【File】→【New File】→【R Script】打开Source区。在处理数据时,我们通常不在控制台输入命令,而是编写一个脚本文件来表示整个操作过程的逻辑流。脚本文件可以是R脚本、Markdown文档、网页或其他类型的配置文件,甚至是C++源代码。该脚本文件可以直接读取并由R引擎执行

Source区支持多个标签页,大家可以同时打开和编辑多个文件。在进行复杂项目时,这个功能非常实用,可以在不同的脚本文件之间快速切换。同时,大家可以选择性地运行代码片段、整个脚本或特定的行。

编辑需要记住R语言的代码规范

以下是一些简单的R语言代码规范,帮助大家编写更好的R代码。

1.1 代码布局和缩进
  • 缩进:使用空格(推荐2或4个空格)进行缩进,不要使用Tab键。保持代码结构清晰。
  • 行长度:每行代码尽量控制在80个字符以内。如果代码较长,可以适当换行并缩进。
# 良好的缩进
my_function <- function(x, y) {
    result <- x + y
    return(result)
}
1.2 注释
  • 注释:注释应该简明扼要,解释代码的功能和逻辑。为每个函数和复杂的代码段添加注释。
  • 注释符号:使用#符号添加单行注释。对于多行注释,可以在每行前面添加#
# 计算两个数的和
my_function <- function(x, y) {
    # 将x和y相加
    result <- x + y
    return(result) # 返回结果
}
1.3 变量和函数命名
  • 命名规则:变量和函数的名称应该具有描述性,使用小写字母和下划线分隔单词(snake_case)。
  • 避免缩写:尽量避免使用缩写,确保名称清晰易懂。
# 良好的命名
total_sales <- 1000
calculate_mean <- function(values) {
    mean_value <- mean(values)
    return(mean_value)
}
1.4 空格和空行
  • 空格:在操作符(如<-+-等)两边留空格,增强可读性。
  • 空行:在函数之间、代码逻辑段之间使用空行,使代码结构更清晰。
# 使用空格和空行
my_function <- function(x, y) {
    result <- x + y

    return(result)
}
1.5 函数定义
  • 函数定义:函数定义应清晰,包括函数名、参数和返回值。每个函数应只做一件事,并保持简短。
  • 文档字符串:为函数添加文档字符串,解释函数的功能、参数和返回值。
# 计算均值的函数
# 参数:values - 数值向量
# 返回:均值
calculate_mean <- function(values) {
    mean_value <- mean(values)
    return(mean_value)
}
1.6 文件和项目结构
  • 文件命名:R脚本文件应使用小写字母和下划线分隔单词,文件名应具有描述性。
  • 项目结构:将R脚本、数据、图表和文档分别存放在不同的文件夹中,保持项目结构清晰。
my_project/
├── data/
│   └── sales_data.csv
├── R/
│   └── analysis.R
└── output/
    └── sales_plot.png
1.7 遵循R社区的风格指南
  • 风格指南:遵循R社区推荐的代码风格指南,如《Tidyverse Style Guide》和《Google's R Style Guide》。这些指南提供了详细的编码规范和最佳实践。

二、Console, Terminal, Jobs区(右上角2区,控制台)

上图,在RStudio中,Console、Terminal、和Background Jobs(后台作业)是三个不同的组件,各自有其独特的功能和用途。

2.1 Console

RStudio的Console(控制台)是一个非常重要的组件,主要用于交互式执行代码、显示输出结果、查看警告和错误信息、管理历史记录、提供代码补全和帮助文档查询、加载和管理R包、管理工作环境,以及与其他RStudio面板(如Source编辑器和Environment面板)交互,为R用户提供了一个直接与R解释器交互的接口。

~~~~~~~~~~

随着数据科学行业的迅速发展,工具的种类和使用方法层出不穷,传统的纸质R语言教材由于篇幅限制和出版审核的繁琐程序,难以及时涵盖最新的技术动态和复杂应用场景。此外,市面上虽有不少R语言免费视频,但大多仅面向初学者,缺乏对如医药等复杂领域的深入探讨。为了解决这些问题,我们在CSDN论坛推出了《用R 探索医药数据科学》专栏。这一专栏将持续更新,不仅是一份教材,更是你掌握最新、最全医药数据科学的得力助手。我们为你精心整理了领域内的深度资料,提供专业且实战导向的内容,帮助你高效提升研究能力,加快医药数据科学领域科研成果的产出。

  • 《用R 探索医药数据科学》专栏会持续更新。
  •  每篇文章篇幅在5000字 至9000字之间。
  • 专栏已更新超过 110篇文章,超60万字。
  • 内容涵盖试验统计、预测模型、科研绘图、数据库、机器学习等热点领域。

https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482

《用R探索医药数据科学》目录

(鉴于专栏处于持续更新状态,请自行查阅最新文章)

第一章:认识数据科学和R

1章1节:医药数据科学的历程和发展,用R语言探索数据科学(更新20241029)-CSDN博客

1章2节:机器学习、统计学与ChatGPT的概述,与R语言的相关 (更新20241229)_ai、chatgpt和机器学习什么关系-CSDN博客

1章3节:R 语言的产生与发展轨迹(更新2024/08/14)-CSDN博客

1章4节:数据可视化, R 语言的静态绘图和 Shiny 的交互可视化演示(更新20240814)-CSDN博客

第二章:R的安装和数据读取

2章1节:R和RStudio的下载和安装(Windows 和 Mac)-CSDN博客

2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示_rstudio的console和terminal-CSDN博客

2章3节:RStudio的高效使用技巧,自定义RStudio环境(更新20241023)_rstudio如何使用-CSDN博客

2章4节:用RStudio做项目管理,静态图和动态图的演示,感受ggplot2的魅力-CSDN博客

2章5节:详解R的扩展包管理(从模糊安装到自动更新)及工作目录和工作空间的设置(更新20241030 )-CSDN博客

2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(20240807 )_r语言 复制数据集-CSDN博客

2章7节:读写RDS,CSV,TXT,Excel,SPSS、SAS、Stata、Minitab等的数据文件(更新20240807)_r语言读取rds文件-CSDN博客

2章8节:一文学会 R Markdown 的文档核心操作,切记文末有R资源的分享_r markdown文件(.rmd)-CSDN博客

2章9节:认识R与数据库连接和网络爬虫,学会在R中使用SQL语言_sql和r语言-CSDN博客

2章10节:用 R 直接下载并分析 NHANES 数据库的数据,文末示例自创便捷下载函数(更新20240807)_nhanes数据分析-CSDN博客

第三章:认识数据

3章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN博客

3章2节:继续讲R的数据结构,数组、数据框和列表-CSDN博客

3章3节:R的赋值操作与算术运算_r里面的赋值-CSDN博客

3章4节:R的逻辑运算和矩阵运算-CSDN博客

3章5节:R 语言的循环与遍历函数全解析-CSDN博客

第四章:数据的预处理

4章1节:全面了解 R 中的数据预处理,通过 R 基本函数实施数据查阅_r数据预处理-CSDN博客

4章2节:从排序到分组和筛选,通过 R 的 dplyr 扩展包来操作-CSDN博客

4章3节:处理医学类原始数据的重要技巧,R语言中的宽长数据转换,tidyr包的使用指南-CSDN博客

4章4节:临床数据科学中如何用R来进行缺失值的处理_临床生存分析缺失值r语言-CSDN博客

4章5节:数据科学中的缺失值的处理,删除和填补的选择,K最近邻填补法-CSDN博客

4章6节:R的多重填补法中随机回归填补法的应用,MICE包的实际应用和统计与可视化评估-CSDN博客

4章7节:用R做数据重塑,数据去重和数据的匹配-CSDN博客

4章8节:用R做数据重塑,行列命名和数据类型转换-CSDN博客

4章9节:用R做数据重塑,增加变量和赋值修改,和mutate()函数的复杂用法_r语言如何在数据集中添加变量-CSDN博客

4章10节:用R做数据重塑,变体函数应用详解和可视化的数据预处理介绍-CSDN博客

4章11节:用R做数据重塑,数据的特征缩放和特征可视化-CSDN博客

4章12节:R语言中字符串的处理,正则表达式的基础要点和特殊字符-CSDN博客

4章13节:R语言中Stringr扩展包进行字符串的查阅、大小转换和排序-CSDN博客

4章14节:R语言中字符串的处理,提取替换,分割连接和填充插值_r语言替换字符串-CSDN博客

4章15节:字符串处理,提取匹配的相关操作扩展,和Stringr包不同函数的重点介绍和举例-CSDN博客

4章16节:R 语言中日期时间数据的关键处理要点_r语言 时刻数据-CSDN博客

第五章:定量数据的统计描述

5章1节:用R语言进行定量数据的统计描述,文末有众数的自定义函数-CSDN博客

5章2节:离散趋势的描述,文末1个简单函数同时搞定20个结果-CSDN博客

5章3节:在R语言中,从实际应用的角度认识假设检验-CSDN博客

5章4节:从R语言的角度认识正态分布与正态性检验-CSDN博客

5章5节:认识方差和方差齐性检验(三种方法全覆盖)-CSDN博客

5章6节:R语言中的t检验,独立样本的t检验-CSDN博客

5章7节:单样本t检验和配对t检验-CSDN博客

5章8节:方差分析(ANOVA)及其应用-CSDN博客

5章9节:组间差异的非参数检验,Wilcoxon秩和检验和Kruskal-Wallis检验-CSDN博客

第六章:定性数据的统计描述 

6章1节:定性数据的统计描述之列联表,文末有优势比计算介绍-CSDN博客

6章2节:认识birthwt数据集,EpiDisplay和Gmodels扩展包的应用-CSDN博客

6章3节:独立性检验,卡方检验,费希尔精确概率检验和Cochran-Mantel-Haenszel检验-CSDN博客

6章4节:相关关系和连续型变量的Pearson相关分析-CSDN博客

6章5节:分类型变量的Spearman相关分析,偏相关分析和相关图分析-CSDN博客

6章6节:相关图的GGally扩展包,和制表的Tableone扩展包-CSDN博客

第七章:R的传统绘图

7章1节:认识R的传统绘图系统,深度解析plot()函数和par()函数的使用-CSDN博客

7章2节:R基础绘图之散点图、直方图和概率密度图-CSDN博客

7章3节:R基础绘图之条形图和堆积条形图-CSDN博客

7章4节:饼图,箱线图和克利夫兰点图-CSDN博客

7章5节:散点矩阵图,与小提琴图、Cleveland 点图、马赛克图和等高图-CSDN博客

7章6节:用R进行图形的保存与导出,详细的高级图形输出,一文囊括大多数保存的各种问题,和如何批量保存不同情况的图形-CSDN博客

 第八章:R的进阶绘图

8章1节:认识 ggplot2 扩展包,深度解析 qplot() 函数的使用-CSDN博客

8章2节:深度讲解 ggplot2 的绘图步骤,理解其核心逻辑, 和 ggplot()函数-CSDN博客

8章3节:用R来绘制医学地理图,文末有具体完整代码-CSDN博客

8章4节:维恩图的认识与应用,和使用UpSet图-CSDN博客

8章5节:用R绘制平行坐标图-CSDN博客

8章6节:雷达图及RadViz图-CSDN博客

8章7节:词云图,矩形树状图和三维散点图(更新20241024)-CSDN博客

8章8节:绘制自定义的高质量动态图和交互式动态图-CSDN博客

第九章:临床试验的统计

9章1节:初步认识临床试验(约7500字)-CSDN博客

9章2节:样本量估计的初步介绍-CSDN博客

9章3节:用R进行样本量估计的统计学参数-CSDN博客

9章4节:两组例数相同的均数比较的样本量估计和绘制功效曲线-CSDN博客

9章5节:两组的例数不等的均数比较的样本量估计和可视化-CSDN博客

9章6节:自身配对设计的均数比较临床试验的样本量估计和可视化-CSDN博客

9章7节:与总体均数比较的样本量估计和可视化-CSDN博客

9章8节: 两、三组试验组率比较的样本量估算和可视化-CSDN博客

9章9节:试验的随机分组认识,用R做简单随机化-CSDN博客

9章10节:用R实现分层随机化-CSDN博客

9章11节:用R实现区组随机化和置换区组随机化-CSDN博客

9章12节:动态随机化方法介绍,和用R绘制随机化卡片-CSDN博客

第十章:Meta分析攻略

10章1节:认识循证医学中的Meta分析,并予代码演示分析绘图-CSDN博客

​​10章2节:Meta分析的7大步骤的扼要解读-CSDN博客

10章3节:二分类变量的Meta分析模型,分析公式构建和结果解读-CSDN博客

10章4节:二分类变量的Meta分析模型,绘制漏斗图和应用剪补法,最后绘制和解读轮廓增强漏斗图-CSDN博客

10章5节:二分类变量的Meta分析模型,敏感性分析和亚组分析,绘制森林图-CSDN博客

10章6节:连续型变量的Meta分析和可视化分析全解-CSDN博客

10章7节:用R进行单个率Meta分析-CSDN博客

10章8节:用R进行网状Meta分析细解-CSDN博客

第十一章:主成分分析

11章1节:深度讲解用R进行主成分分析(上)-CSDN博客

11章2节:​深度讲解用R进行主成分分析(中)-CSDN博客

11章3节:​深度讲解用R进行主成分分析(下)-CSDN博客

11章4节:学会用R进行因子分析(上)-CSDN博客  

11章5节:学会用R进行因子分析(中)-CSDN博客

11章6节:学会用R进行因子分析(下)-CSDN博客

第十二章:常见类型回归分析

12章1节:认识回归分析的历史背景及应用-CSDN博客

12章2节:构建一元和多元的线性回归模型-CSDN博客

12章3节:回归模型中哑变量的应用和设置-CSDN博客

12章4节:深度解读构建回归模型表达式的九个关键符号-CSDN博客

12章5节:深度剖析回归模型结果的相关函数-CSDN博客

12章6节:深度解读线性回归模型的绘图判断-CSDN博客

12章7节:构建因变量为分类变量的二分类Logistic回归模型-CSDN博客

12章8节:详解不同逻辑回归模型的比较,和如何进行变量优化-CSDN博客

12章9节:深度讲解有序多分类Logistic回归模型的分析-CSDN博客

12章10节:条件Logistic回归模型的分析-CSDN博客

第十三章:生存分析模型

13章1节:生存分析的基本概念和主要内容-CSDN博客

13章2节:用R进行生存率的描述与估计-CSDN博客

13章3节:生存分析的假设检验及可视化展示-CSDN博客

13章4节:认识比例风险模型和Cox比例风险模型,学会从协变量的调整选择最优模型-CSDN博客

13章5节:用逐步回归方法来选择模型协变量,比例风险假定的检验和森林图的绘制-CSDN博客

第十四章:匹配技术应用

14章1节:认识临床研究的匹配技术-CSDN博客

14章2节:匹配结果的可视化和匹配后新数据分析-CSDN博客

第十五章:判别和聚类分析

15章1节:医学研究中的判别分析和聚类分析-CSDN博客

15章2节:线性判别分析预测模型构建评估和可视化演示-CSDN博客

15章3节:二次判别分析技术的运用-CSDN博客

15章4节:K-Means聚类分析的运用,和改进算法的K-Means++-CSDN博客

15章5节:实现k-medoids聚类算法的PAM和CLARA方法-CSDN博客

15章6节:凝聚层次聚类和分裂层次聚类-CSDN博客

第十六章:机器学习入门 

16章1节:机器学习和人工智能的基础知识-CSDN博客

16章2节:机器学习在临床预测中的应用场景,与临床预测模型的关键步骤解析-CSDN博客

16章3节:详析训练数据集、测试数据集和验证数据集及其划分策略-CSDN博客

16章4节:采用随机抽样法和等比抽样法对数据集进行二份及三份的划分-CSDN博客

16章5节:划分数据的多次随机抽样的Bootstrap法和加权随机抽样法-CSDN博客

16章6节:交叉验证概述与分类,R中K折交叉验证的详细解析-CSDN博客

16章7节:机器学习算法解读,与数值预测回归模型构建-CSDN博客

16章8节:朴素贝叶斯分类预测模型,从构建、解析到实战-CSDN博客

16章9节:认识决策树,构建CART算法的决策树模型-CSDN博客

如果在RStudio左上角和右上角都出现了数据集,那么这些数据集应该是已经被读入到RStudio中了。如果你无法使用这些数据集,可能是因为你没有正确地指定数据集的名称或格式,或者没有使用正确的数据集对象来执行操作。 以下是一些可能导致你无法使用数据集的原因和解决方法: 1. 没有正确指定数据集名称:请确保你使用的数据集名称是正确的,并且与你的代码中的名称一致。你可以使用以下代码来查看当前已经读入到RStudio中的数据集: ``` # 查看当前已经读入到RStudio中的数据集 ls() ``` 这个代码将列出当前已经读入到RStudio中的所有数据集的名称。请确保你使用的数据集名称在这个列表中。 2. 数据集格式不正确:请确保你使用的数据集是正确的格式。如果你使用的是CSV文件,请使用以下代码将其读入到RStudio中: ``` # 读取CSV文件 data <- read.csv("your_data_file.csv") ``` 如果你使用的是Excel文件,请使用以下代码将其读入到RStudio中: ``` # 读取Excel文件 library(readxl) data <- read_excel("your_data_file.xlsx") ``` 请将代码中的"your_data_file.csv"或"your_data_file.xlsx"替换为你实际使用的数据集文件名。 3. 操作对象不正确:请确保你使用的是正确的数据集对象来执行操作。如果你在使用数据集时遇到了错误,请检查你使用的数据集对象是否正确。例如,如果你想要计算数据集的样本方差,请使用以下代码: ``` # 计算数据集的样本方差 variance <- var(data) ``` 这个代码将使用名为"data"的数据集对象来计算数据集的样本方差。请确保你使用的数据集对象名称与你的代码中的名称一致。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R科学与人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值