下面内容摘录自《用R探索医药数据科学》专栏文章的部分内容(原文8827字)。
2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示-CSDN博客
三、Environment, History, Connections,Tutorial区(左下角3区,环境变量框)
上图,简单认识就是Environment展示已构建的变量和函数,这些可以重复使用,默认展示的是全局环境中的变量,即你正在使用的工作空间。History记录所有在Console区内执行的代码历史。Connections方便连接外部数据库。
3.1 Environment区
Environment区是RStudio中一个非常重要的面板,用于展示当前R会话中所有已构建的变量和函数。这个区域的主要功能包括变量和函数的展示、对象管理、数据导入和导出以及环境切换。
上图,Environment区默认展示的是全局环境中的变量和函数,即当前工作空间中正在使用的所有对象。大家可以在这个面板中查看变量的名称、类型、大小和内容。通过Environment区直接管理对象,例如删除不需要的变量、查看数据框的内容、以及导出数据到外部文件。右键点击某个对象,会出现相应的管理选项。
上图,Environment区还提供了便捷的数据导入和导出功能。大家可以使用“Import Dataset”按钮从Excel、SPSS、SAS和Stata等文件中导入数据,也可以将R中的数据框导出为这些格式的文件。当然,你也可以使用代码,如下图。
# 载入所需的包
library(readr) # 用于导入 CSV 文件
library(readxl) # 用于导入 Excel 文件
library(haven) # 用于导入 SPSS、SAS 和 Stata 文件
library(writexl) # 用于导出 Excel 文件
# 从 CSV 文件导入数据
data_csv <- read_csv("data.csv")
# 从 Excel 文件导入数据
data_excel <- read_excel("data.xlsx", sheet = "Sheet1")
# 从 SPSS 文件导入数据
data_spss <- read_sav("data.sav")
# 从 SAS 文件导入数据
data_sas <- read_sas("data.sas7bdat")
# 从 Stata 文件导入数据
data_stata <- read_dta("data.dta")
# 导出数据框为 CSV 文件
write_csv(data_csv, "data_export.csv")
# 导出数据框为 Excel 文件
write_xlsx(data_excel, path = "data_export.xlsx")
3.2 History区
History区记录了所有在Console区内执行过的代码历史,这对于代码的追踪和重复使用非常有帮助。每当用户在Console中执行一条命令,这条命令就会自动记录在History区。大家可以通过浏览历史记录,找到之前执行过的代码,避免重复输入。
History区还提供了命令搜索和筛选功能,大家可以在History区中使用搜索功能,快速找到特定的命令。对于长时间的工作会话,这一功能尤为重要。大家也可以直接从History区中选中一条或多条命令,并将其重新发送到Console中执行,这使得代码的重用变得非常简单。大家还可以将History区中的代码历史保存为脚本文件,以便后续参考和使用。
3.3 Connections区
Connections区用于方便地连接和管理外部数据库,使得数据科学家和分析师可以轻松地访问和操作大型数据集。它使您能够轻松连接到各种数据源,并探索连接中的对象和数据。它不仅扩展了与 R 数据库工作的工具,还提供了连接管理功能。
上图,通过“New Connection”按钮,您可以选择不同的连接类型并创建与数据源的连接。对于已安装的 R 包,您可以通过执行相应的 R 代码手动创建连接。如果您使用的是 ODBC 数据源,需要确保安装了最新版本的 odbc 包。数据连接通常是临时的,当 R 会话结束或重新启动时会关闭。要重新建立连接,可以通过点击 Connections 选项卡来查看所有连接记录,并选择如何重新连接。您可以立即在 R 控制台创建连接,或将连接代码放入新的 R 脚本或 R Notebook 中。Connections区还允许您探索当前连接的数据对象,并显示所有连接的历史记录,便于管理和访问。
3.4 Tutorial区
Tutorial区是RStudio中一个专门用于学习和教学的区域。RStudio 利用 learnr 包提供了一个交互式的学习平台,使用户能够直接在 RStudio 环境中学习和练习 R 编程和数据科学技能。
如上图,learnr 包允许创建交互式教程,这些教程可以包含 R 代码块、可运行的练习、测验和其他富有互动性的学习元素。这些教程涵盖了R编程的基本概念和高级技巧,适合不同水平的用户。Tutorial区支持互动学习,用户可以在教程中直接输入和运行代码,实时查看结果,这种互动方式有助于加深对知识的理解和掌握。用户可以在Tutorial区中整合外部的学习资源,如在线课程、书籍和文档,这使得RStudio成为一个集成的学习平台,方便用户系统地学习和提升。教师和讲师可以创建自定义的教程,并通过Tutorial区分发给学生,这对于R编程的教学和培训非常有用,但是更适合英文为母语的伙伴们。
四、Files, Plots, Packages, Help, Viewer和Presentation区(左下角4区,应用框)
~~~~~~~~~~
随着数据科学行业的迅速发展,工具的种类和使用方法层出不穷,传统的纸质R语言教材由于篇幅限制和出版审核的繁琐程序,难以及时涵盖最新的技术动态和复杂应用场景。此外,市面上虽有不少R语言免费视频,但大多仅面向初学者,缺乏对如医药等复杂领域的深入探讨。为了解决这些问题,我们在CSDN论坛推出了《用R 探索医药数据科学》专栏。这一专栏将持续更新,不仅是一份教材,更是你掌握最新、最全医药数据科学的得力助手。我们为你精心整理了领域内的深度资料,提供专业且实战导向的内容,帮助你高效提升研究能力,加快医药数据科学领域科研成果的产出。
- 《用R 探索医药数据科学》专栏会持续更新。
- 每篇文章篇幅在5000字 至9000字之间。
- 专栏已更新超过 110篇文章,超60万字。
- 内容涵盖试验统计、预测模型、科研绘图、数据库、机器学习等热点领域。
https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482
《用R探索医药数据科学》目录
(鉴于专栏处于持续更新状态,请自行查阅最新文章)
第一章:认识数据科学和R
1章1节:医药数据科学的历程和发展,用R语言探索数据科学(更新20241029)-CSDN博客
1章2节:机器学习、统计学与ChatGPT的概述,与R语言的相关 (更新20241229)_ai、chatgpt和机器学习什么关系-CSDN博客
1章3节:R 语言的产生与发展轨迹(更新2024/08/14)-CSDN博客
1章4节:数据可视化, R 语言的静态绘图和 Shiny 的交互可视化演示(更新20240814)-CSDN博客
第二章:R的安装和数据读取
2章1节:R和RStudio的下载和安装(Windows 和 Mac)-CSDN博客
2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示_rstudio的console和terminal-CSDN博客
2章3节:RStudio的高效使用技巧,自定义RStudio环境(更新20241023)_rstudio如何使用-CSDN博客
2章4节:用RStudio做项目管理,静态图和动态图的演示,感受ggplot2的魅力-CSDN博客
2章5节:详解R的扩展包管理(从模糊安装到自动更新)及工作目录和工作空间的设置(更新20241030 )-CSDN博客
2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(20240807 )_r语言 复制数据集-CSDN博客
2章7节:读写RDS,CSV,TXT,Excel,SPSS、SAS、Stata、Minitab等的数据文件(更新20240807)_r语言读取rds文件-CSDN博客
2章8节:一文学会 R Markdown 的文档核心操作,切记文末有R资源的分享_r markdown文件(.rmd)-CSDN博客
2章9节:认识R与数据库连接和网络爬虫,学会在R中使用SQL语言_sql和r语言-CSDN博客
2章10节:用 R 直接下载并分析 NHANES 数据库的数据,文末示例自创便捷下载函数(更新20240807)_nhanes数据分析-CSDN博客
第三章:认识数据
3章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN博客
3章2节:继续讲R的数据结构,数组、数据框和列表-CSDN博客
3章3节:R的赋值操作与算术运算_r里面的赋值-CSDN博客
第四章:数据的预处理
4章1节:全面了解 R 中的数据预处理,通过 R 基本函数实施数据查阅_r数据预处理-CSDN博客
4章2节:从排序到分组和筛选,通过 R 的 dplyr 扩展包来操作-CSDN博客
4章3节:处理医学类原始数据的重要技巧,R语言中的宽长数据转换,tidyr包的使用指南-CSDN博客
4章4节:临床数据科学中如何用R来进行缺失值的处理_临床生存分析缺失值r语言-CSDN博客
4章5节:数据科学中的缺失值的处理,删除和填补的选择,K最近邻填补法-CSDN博客
4章6节:R的多重填补法中随机回归填补法的应用,MICE包的实际应用和统计与可视化评估-CSDN博客
4章7节:用R做数据重塑,数据去重和数据的匹配-CSDN博客
4章8节:用R做数据重塑,行列命名和数据类型转换-CSDN博客
4章9节:用R做数据重塑,增加变量和赋值修改,和mutate()函数的复杂用法_r语言如何在数据集中添加变量-CSDN博客
4章10节:用R做数据重塑,变体函数应用详解和可视化的数据预处理介绍-CSDN博客
4章11节:用R做数据重塑,数据的特征缩放和特征可视化-CSDN博客
4章12节:R语言中字符串的处理,正则表达式的基础要点和特殊字符-CSDN博客
4章13节:R语言中Stringr扩展包进行字符串的查阅、大小转换和排序-CSDN博客
4章14节:R语言中字符串的处理,提取替换,分割连接和填充插值_r语言替换字符串-CSDN博客
4章15节:字符串处理,提取匹配的相关操作扩展,和Stringr包不同函数的重点介绍和举例-CSDN博客
4章16节:R 语言中日期时间数据的关键处理要点_r语言 时刻数据-CSDN博客
第五章:定量数据的统计描述
5章1节:用R语言进行定量数据的统计描述,文末有众数的自定义函数-CSDN博客
5章2节:离散趋势的描述,文末1个简单函数同时搞定20个结果-CSDN博客
5章3节:在R语言中,从实际应用的角度认识假设检验-CSDN博客
5章4节:从R语言的角度认识正态分布与正态性检验-CSDN博客
5章5节:认识方差和方差齐性检验(三种方法全覆盖)-CSDN博客
5章9节:组间差异的非参数检验,Wilcoxon秩和检验和Kruskal-Wallis检验-CSDN博客
第六章:定性数据的统计描述
6章1节:定性数据的统计描述之列联表,文末有优势比计算介绍-CSDN博客
6章2节:认识birthwt数据集,EpiDisplay和Gmodels扩展包的应用-CSDN博客
6章3节:独立性检验,卡方检验,费希尔精确概率检验和Cochran-Mantel-Haenszel检验-CSDN博客
6章4节:相关关系和连续型变量的Pearson相关分析-CSDN博客
6章5节:分类型变量的Spearman相关分析,偏相关分析和相关图分析-CSDN博客
6章6节:相关图的GGally扩展包,和制表的Tableone扩展包-CSDN博客
第七章:R的传统绘图
7章1节:认识R的传统绘图系统,深度解析plot()函数和par()函数的使用-CSDN博客
7章2节:R基础绘图之散点图、直方图和概率密度图-CSDN博客
7章5节:散点矩阵图,与小提琴图、Cleveland 点图、马赛克图和等高图-CSDN博客
7章6节:用R进行图形的保存与导出,详细的高级图形输出,一文囊括大多数保存的各种问题,和如何批量保存不同情况的图形-CSDN博客
第八章:R的进阶绘图
8章1节:认识 ggplot2 扩展包,深度解析 qplot() 函数的使用-CSDN博客
8章2节:深度讲解 ggplot2 的绘图步骤,理解其核心逻辑, 和 ggplot()函数-CSDN博客
8章3节:用R来绘制医学地理图,文末有具体完整代码-CSDN博客
8章4节:维恩图的认识与应用,和使用UpSet图-CSDN博客
8章7节:词云图,矩形树状图和三维散点图(更新20241024)-CSDN博客
8章8节:绘制自定义的高质量动态图和交互式动态图-CSDN博客
第九章:临床试验的统计
9章4节:两组例数相同的均数比较的样本量估计和绘制功效曲线-CSDN博客
9章5节:两组的例数不等的均数比较的样本量估计和可视化-CSDN博客
9章6节:自身配对设计的均数比较临床试验的样本量估计和可视化-CSDN博客
9章8节: 两、三组试验组率比较的样本量估算和可视化-CSDN博客
9章9节:试验的随机分组认识,用R做简单随机化-CSDN博客
9章11节:用R实现区组随机化和置换区组随机化-CSDN博客
9章12节:动态随机化方法介绍,和用R绘制随机化卡片-CSDN博客
第十章:Meta分析攻略
10章1节:认识循证医学中的Meta分析,并予代码演示分析绘图-CSDN博客
10章2节:Meta分析的7大步骤的扼要解读-CSDN博客
10章3节:二分类变量的Meta分析模型,分析公式构建和结果解读-CSDN博客
10章4节:二分类变量的Meta分析模型,绘制漏斗图和应用剪补法,最后绘制和解读轮廓增强漏斗图-CSDN博客
10章5节:二分类变量的Meta分析模型,敏感性分析和亚组分析,绘制森林图-CSDN博客
10章6节:连续型变量的Meta分析和可视化分析全解-CSDN博客
第十一章:主成分分析
11章2节:深度讲解用R进行主成分分析(中)-CSDN博客
11章3节:深度讲解用R进行主成分分析(下)-CSDN博客
第十二章:常见类型回归分析
12章4节:深度解读构建回归模型表达式的九个关键符号-CSDN博客
12章7节:构建因变量为分类变量的二分类Logistic回归模型-CSDN博客
12章8节:详解不同逻辑回归模型的比较,和如何进行变量优化-CSDN博客
12章9节:深度讲解有序多分类Logistic回归模型的分析-CSDN博客
12章10节:条件Logistic回归模型的分析-CSDN博客
第十三章:生存分析模型
13章4节:认识比例风险模型和Cox比例风险模型,学会从协变量的调整选择最优模型-CSDN博客
13章5节:用逐步回归方法来选择模型协变量,比例风险假定的检验和森林图的绘制-CSDN博客
第十四章:匹配技术应用
14章2节:匹配结果的可视化和匹配后新数据分析-CSDN博客
第十五章:判别和聚类分析
15章2节:线性判别分析预测模型构建评估和可视化演示-CSDN博客
15章4节:K-Means聚类分析的运用,和改进算法的K-Means++-CSDN博客
15章5节:实现k-medoids聚类算法的PAM和CLARA方法-CSDN博客
第十六章:机器学习入门
16章2节:机器学习在临床预测中的应用场景,与临床预测模型的关键步骤解析-CSDN博客
16章3节:详析训练数据集、测试数据集和验证数据集及其划分策略-CSDN博客
16章4节:采用随机抽样法和等比抽样法对数据集进行二份及三份的划分-CSDN博客
16章5节:划分数据的多次随机抽样的Bootstrap法和加权随机抽样法-CSDN博客
16章6节:交叉验证概述与分类,R中K折交叉验证的详细解析-CSDN博客
16章7节:机器学习算法解读,与数值预测回归模型构建-CSDN博客