GO和KEGG富集分析结果的可视化

### 步骤总结:
1. **提取差异表达基因**:将目标基因列表准备好。
2. **在DAVID网站进行基因注释**:DAVID Functional Annotation Tools (ncifcrf.gov)
   - **Start Analysis**:开始分析。


   - **Upload**:上传基因列表。


   - **Step 1: Enter Gene List**:输入基因列表。


   - **Step 2: Select Identifier**:选择基因的标识符(如Ensembl、Entrez ID等)。
   - **Step 3: List Type: Gene List**:确认列表类型为基因列表。
   - **Step 4: Submit List**:提交基因列表。
3. **功能注释分析**:
   - **Clear All**:清除所有默认勾选的富集分析选项。
   - **Gene_Ontology**:查看GO分析的富集结果,包括BB(生物过程)、MF(分子功能)和BP(细胞成分)三个富集分析。
   - **Pathways**:查看通路分析的富集结果,特别是KEGG通路分析。

4. **下载注释数据**:分别下载GO和KEGG的富集分析结果。

5. **使用R语言进行可视化**:
   - 代码用于将GO和KEGG的富集分析结果可视化,生成柱状图。
   - 使用`ggplot2`包进行图形绘制,生成的图表将基因富集结果按FDR(矫正后的p值)排序,并在X轴显示Term名称,Y轴显示富集基因数目。

### 代码优化:
```r
# 必要的包
library(ggplot2)

# 输入输出文件路径
inputFile <- "input.txt"
outFile <- "barplot.pdf"

# 设置工作目录
setwd("D:\\biowolf\\bioR\\03.barplotPval")

# 读取数据
rt <- read.table(inputFile, header = TRUE, sep = "\t", check.names = FALSE)

# 按FDR升序排序
labels <- rt[order(rt$FDR), "Term"]
rt$Term <- factor(rt$Term, levels = labels)

# 绘制柱状图
p <- ggplot(data = rt) +
  geom_bar(aes(x = Term, y = Count, fill = FDR), stat = 'identity') +
  coord_flip() +
  scale_fill_gradient(low = "red", high = "blue") + 
  xlab("Term") + 
  ylab("Gene count") + 
  theme(axis.text.x = element_text(color = "black", size = 10),
        axis.text.y = element_text(color = "black", size = 10)) + 
  scale_y_continuous(expand = c(0, 0)) + 
  scale_x_discrete(expand = c(0, 0)) + 
  theme_bw()

# 保存图片
ggsave(outFile, plot = p, width = 7, height = 5)
```

参考学习基因富集工具DAVID(2)_david富集分析-CSDN博客

### 富集分析的概念及其在生物信息学中的实现 #### 什么是富集分析富集分析是一种用于评估一组基因或蛋白质是否显著关联于某些特定生物学功能、通路或其他注释的方法。这种方法通常基于统计测试来判断观察到的现象是否具有统计意义[^1]。 #### 富集分析的实现方法 富集分析可以通过多种方式实现,具体取决于研究目标以及所使用的工具技术: 1. **统计基础** 富集分析的核心在于利用统计模型检测某一类别(如基因本体论 GO 条目)内的成员是否比随机预期更为集中。常见的统计检验方法包括超几何分布检验 Fisher 精确检验[^2]。 2. **数据准备与预处理** 在执行富集分析之前,需要准备好两部分数据:一是差异表达基因列表;二是背景基因集合。这些数据可能来源于高通量测序实验或其他分子生物学技术[^4]。 3. **算法选择** 对于简单的单次路径分析,可以直接采用上述提到的传统统计手段完成计算。然而,在面对复杂的多维度数据分析需求时,则可引入机器学习框架下的高级建模策略,比如通过 PyTorch 构建神经网络辅助优化传统流程[^3]。 4. **结果解读与可视化** 完成初步计算之后,还需要进一步解析所得数值并将其转化为易于理解的形式呈现出来。这一环节不仅涉及基本图表绘制,还应考虑如何有效传达潜在科学发现背后的意义。 以下是使用 Python 编程语言进行简单富集分析的一个例子: ```python from scipy.stats import hypergeom import numpy as np def calculate_enrichment(population_size, gene_set_size, overlap_size, background_gene_set_size): rv = hypergeom(M=population_size, n=gene_set_size, N=background_gene_set_size) p_value = rv.sf(overlap_size - 1) # Survival function gives P(X >= k) return p_value # Example usage p_val = calculate_enrichment( population_size=1000, gene_set_size=50, overlap_size=20, background_gene_set_size=80 ) print(f"P-value of enrichment: {p_val}") ``` 此脚本定义了一个函数 `calculate_enrichment` ,该函数接收四个参数——总体大小、感兴趣基因集规模、交集数量以及参照组尺寸,并返回相应的P值以衡量富集程度。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值