【SLAM评估指标介绍】—— SLAM精度的评估的几种指标介绍

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

SLAM(同步定位与地图构建)技术的精度评估对其可靠性和性能至关重要。常用的评估指标包括绝对轨迹误差(ATE)、相对姿态误差(RPE)、地图精度和闭环检测。ATE用于衡量SLAM系统估计轨迹与实际路径之间的偏差,通过计算估计位置和真实位置的欧氏距离来量化定位精度,低ATE值表明系统能更准确地反映实际路径。RPE评估相邻帧之间的相对运动估计误差,通过比较估计的相对运动与真实相对运动之间的差异来衡量局部精度,常用于评估短时间内的累积误差,特别适用于动态环境。地图精度通过比较生成的地图与实际环境数据来评估地图的精确度,高精度地图对机器人导航和环境理解至关重要。闭环检测用于评估SLAM系统能否在返回先前位置时正确识别并校正累积误差,成功的闭环检测能够消除漂移误差,提高系统定位和地图构建精度,增强系统鲁棒性。这些评估指标在论文中帮助研究人员全面了解SLAM系统性能,在实际工程中则确保SLAM系统在应用中的可靠性和有效性。

1.ATE/APE

绝对轨迹误差(Absolute Trajectory Error ATE):
ATE 对比数据序列时间戳中每个相 近时刻下算法解算的载体位姿估计值与真实位姿 之间的差值,是评估算法定位精度的主要指标,公式如下
在这里插入图片描述
有的地方仅考虑平移误差,从而可以定义绝对平移误差(Absolute Translational Error, ATE):
在这里插入图片描述
其中 trans 表示取括号内部变量的平移部分

2.RPE(Relative Pose Error)

RPE 定义的是相对的误差。RPE 计算数据序列时间戳中每个固定时间间隔内 算法估计位姿变化量与真实位姿变化量的差值,是评估系统漂移的主要指标,相对位姿误差计算的公式如下所示
在这里插入图片描述
只取平移部分:
在这里插入图片描述

3. 具体的指标介绍

max: 表示最大误差;
mean: 平均误差;
median: 误差中位数;
min: 最小误差;
rmse: 均方根误差;
sse: 和方差、误差平方和;
std: 标准差

4. 总结

(1) ATE(Absolute Trajectory Error):绝对轨迹误差,以米(m)为单位,用于度量估计的相机在全局参考坐标系下的位置误差。
(2) RPEt(Relative Pose Error translation):相对姿态误差(平移部分),以米/米(m/m)为单位,度量估计的相机相对于真实相机的平移误差。
(3) RPER(Relative Pose Error rotation):相对姿态误差(旋转部分),以度/米(°/m)为单位,度量估计的相机相对于真实相机的旋转误差。
参考:

https://blog.csdn.net/weixin_44458958/article/details/130956717?ops_request_misc=&request_id=&biz_id=102&utm_term=SLAM%E7%B2%BE%E5%BA%A6%E7%9A%84%E8%AF%84%E4%BC%B0%E7%9A%84%E5%87%A0%E7%A7%8D%E6%8C%87%E6%A0%87%E4%BB%8B%E7%BB%8D&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-0-130956717.142v100pc_search_result_base4&spm=1018.2226.3001.4187

### LangChain 实现检索功能的方法 LangChain 是一种强大的工具,用于构建基于大型语言模型的应用程序。它提供了多种方式来实现检索功能,包括向量数据库集成、文本分割以及查询优化等功能。 #### 1. 向量存储与检索 通过 LangChain 的 `Chroma` 或其他支持的向量数据库(如 Pinecone 和 Weaviate),可以轻松实现高效的相似度搜索。以下是具体实现方法: - **加载文档** 首先需要加载要处理的数据源。可以通过内置的 `WebBaseLoader` 加载网页内容或其他类型的文件[^4]。 ```python from langchain_community.document_loaders import WebBaseLoader loader = WebBaseLoader("https://example.com") docs = loader.load() ``` - **分词操作** 将原始文档拆分为较小的部分以便于嵌入和存储。推荐使用 `RecursiveCharacterTextSplitter` 进行递归字符分割。 ```python from langchain_text_splitters import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) splits = text_splitter.split_documents(docs) ``` - **嵌入与存储** 利用 OpenAI 提供的嵌入服务将文本转换成高维向量,并将其存入 Chroma 数据库中。 ```python from langchain_openai import OpenAIEmbeddings from langchain import hub from langchain_chroma import Chroma embedding = OpenAIEmbeddings() db = Chroma.from_documents(splits, embedding) retriever = db.as_retriever(search_kwargs={"k": 3}) ``` #### 2. 查询优化策略 为了提高检索效率和准确性,可采用改写—检索—读取模式。此流程涉及三个主要阶段:预处理输入查询语句;执行实际查找过程;最后综合返回的结果形成最终答复[^2]。 - **安装必要组件** ```bash pip install -U langchain-cli ``` - **创建项目结构** 定义清晰的工作流有助于更好地管理和扩展应用逻辑。例如,在初始化一个新的 LangChain 工程时可以选择合适的模板快速搭建框架。 #### 3. 父文档检索器 对于复杂场景下的多级关联关系分析,则需要用到更高级别的父文档检索机制。这种方法允许我们不仅关注单个节点本身的信息,还考虑到了它们之间的层次连接情况[^3]。 ```python parent_doc_retrieval_chain = ParentDocumentRetriever( child_splitter=text_splitter, parent_splitter=ParentSplitter(), search=retriever ) result = parent_doc_retrieval_chain.invoke(query="your query here") print(result['source']) ``` 以上展示了如何利用 LangChain 库完成基本到复杂的各种形式的内容检索任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啥也不会的研究僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值