用Coze知识库+RAG技术,给AI装上「企业知识外挂」

企业知识库是培训咨询机构的核心竞争力,但这些内部资料往往无法被公开网络和大语言模型(LLM)获取。

如何让AI精准解答企业内部问题?关键在于用RAG技术为AI赋能!

本文手把手教你通过Coze知识库打造「智能知识外挂」,让咨询顾问的考研答疑效率提升200%——无需训练模型,一键构建专属AI助手。

图片

1

创建智能体

首先,在Coze平台(https://www.coze.cn)点击左侧的加号(+)创建智能体,输入名称和功能介绍

图片

2

人设和回复逻辑

    在左边窗口输入“人设与回复逻辑”提示词。

    如果不会写也没关系,点小星星,输入一句话描述,让AI自动生成。然后,你再根据需要来修改。

    图片

    这里还添加了必应搜索插件,当知识库里没有找到相关内容时,可以上网搜索。

    图片

    3

    知识库

      重点来了,这是企业机构添加内部知识的地方。在智能体出现之前,可以使用RAG(Retrieval-Augmented Generation检索增强生成)技术来实现,比如Python Langchain框架。这个需要通过编码实现,要创建适量数据库,还要定义匹配算法规则,比如余弦相似度。

      使用Coze智能体的知识库,可以无需代码就能实现RAG功能。

      比如,我添加了一个文本文档作为知识库。输入问题之后,可以看到智能体自动搜索了知识库。

      图片

      除了文本文件(包括txt、word、pdf等),还可以上传表格和图片。

      比如,我上传了一份Excel表格,里面包含几所高校历年研究生招生的录取数据。

      可以看到智能体也能搜索知识库进行回答。

      这里提醒一下,上传表格数据的时候,要勾选索引,相当于查询数据库。索引要能区分不同的数据。比如这里,我勾选了学校名称、年份、专业三个字段作为组合索引,这样可以唯一标识一条记录。

      图片

      还可以使用图片知识库。

      比如,我上传了两张图片并做了标注。这样在提问的时候,智能体就能从知识库中准确地找到相应的图片。

      图片

      图片

      4

      发布与使用

        调试完成之后,点击发布,把智能体发布到扣子商店。然后复制智能体链接就可以发给员工使用了。

        图片

        以上就是使用Coze知识库来构建考研咨询助手的例子。

        如果咨询场景复杂,可以启用Coze的多智能体模式,创建多个子智能体分别处理不同类型的问题(如报名流程、课程咨询、政策解读等)。

         一、大模型风口已至:月薪30K+的AI岗正在批量诞生

        2025年大模型应用呈现爆发式增长,根据工信部最新数据:

        国内大模型相关岗位缺口达47万

        初级工程师平均薪资28K

        70%企业存在"能用模型不会调优"的痛点

        真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

        二、如何学习大模型 AI ?


        🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

        由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

        但是具体到个人,只能说是:

        “最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

        这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

        我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

        我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

        1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
        2️⃣ RAG系统:让大模型精准输出行业知识
        3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

        📦熬了三个大夜整理的《AI进化工具包》送你:
        ✔️ 大厂内部LLM落地手册(含58个真实案例)
        ✔️ 提示词设计模板库(覆盖12大应用场景)
        ✔️ 私藏学习路径图(0基础到项目实战仅需90天)

         

        第一阶段(10天):初阶应用

        该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

        *   大模型 AI 能干什么?
        *   大模型是怎样获得「智能」的?
        *   用好 AI 的核心心法
        *   大模型应用业务架构
        *   大模型应用技术架构
        *   代码示例:向 GPT-3.5 灌入新知识
        *   提示工程的意义和核心思想
        *   Prompt 典型构成
        *   指令调优方法论
        *   思维链和思维树
        *   Prompt 攻击和防范
        *   …

        第二阶段(30天):高阶应用

        该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

        *   为什么要做 RAG
        *   搭建一个简单的 ChatPDF
        *   检索的基础概念
        *   什么是向量表示(Embeddings)
        *   向量数据库与向量检索
        *   基于向量检索的 RAG
        *   搭建 RAG 系统的扩展知识
        *   混合检索与 RAG-Fusion 简介
        *   向量模型本地部署
        *   …

        第三阶段(30天):模型训练

        恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

        到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

        *   为什么要做 RAG
        *   什么是模型
        *   什么是模型训练
        *   求解器 & 损失函数简介
        *   小实验2:手写一个简单的神经网络并训练它
        *   什么是训练/预训练/微调/轻量化微调
        *   Transformer结构简介
        *   轻量化微调
        *   实验数据集的构建
        *   …

        第四阶段(20天):商业闭环

        对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

        *   硬件选型
        *   带你了解全球大模型
        *   使用国产大模型服务
        *   搭建 OpenAI 代理
        *   热身:基于阿里云 PAI 部署 Stable Diffusion
        *   在本地计算机运行大模型
        *   大模型的私有化部署
        *   基于 vLLM 部署大模型
        *   案例:如何优雅地在阿里云私有部署开源大模型
        *   部署一套开源 LLM 项目
        *   内容安全
        *   互联网信息服务算法备案
        *   …

        学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

        如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

        这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

        ### 如何通过阿里云百炼 API 实现知识库的存储 利用阿里云百炼 API 的 RAG(检索增强生成)技术,可以高效地构建基于知识库的应用程序。以下是关于如何使用百炼 API 来完成知识库存储的具体方法: #### 1. 知识库配置 在初始化 `Application` 对象时,可以通过传递 `rag_config` 参数来指定知识库的相关属性。这些属性包括但不限于知识库路径、嵌入模型和向量数据库的选择。 ```python from bailian import Application app = Application.create( rag_config={ "knowledge_base": "oss://your-bucket/finance-docs/", # OSS 路径用于存储文档数据 "embedding_model": "bge-m3", # 使用的嵌入模型名称 "vector_db": "milvus" # 向量数据库类型 } ) ``` 上述代码片段展示了如何通过配置 `knowledge_base` 属性指向对象存储服务 (OSS),从而实现外部文件作为知识源的加载[^1]。 #### 2. 支持的知识库格式 为了适配多样化的场景需求,百炼 API 提供了对多种内容格式的支持。例如 PDF 文件、Word 文档 (.docx) 或纯文本文件都可以被解析并转化为结构化数据存入向量数据库中。具体操作可能涉及预处理脚本以确保输入材料符合预期标准。 #### 3. 数据持久化与索引建立 当设定好基础架构之后,在实际运行过程中每次调用 `query()` 函数之前都需要先执行一次完整的索引重建过程或者增量更新机制。这一步骤对于保持查询性能至关重要,因为它直接影响到后续自然语言理解阶段的速度与准确性。 ```python response = app.query("最近美联储加息对科技股的影响是什么?") print(response.text) ``` 这里展示的是最终用户界面部分——即接收来自前端用户的请求并将结果返回给他们的简化版本;而背后复杂的计算逻辑则完全隐藏起来让用户专注于高层次的设计思考之上。 另外值得注意的是除了阿里巴巴集团旗下的产品之外还有其他类似的解决方案可供选择比如字节跳动推出的 Coze 平台同样提供了强大的插件生态系统以及简便直观的操作体验使得即使是初学者也能轻松上手开发属于自己的人工智能应用程序[^2]。 尽管如此每种工具都有各自的特点所以在决定采用哪一个方案前最好能充分考虑项目特定的需求然后再做出明智的选择。
        评论
        添加红包

        请填写红包祝福语或标题

        红包个数最小为10个

        红包金额最低5元

        当前余额3.43前往充值 >
        需支付:10.00
        成就一亿技术人!
        领取后你会自动成为博主和红包主的粉丝 规则
        hope_wisdom
        发出的红包
        实付
        使用余额支付
        点击重新获取
        扫码支付
        钱包余额 0

        抵扣说明:

        1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
        2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

        余额充值