别只关注deepseek了,阿里发布qwen2.5-max,比deepseek更好更稳定,排名超越deepseek

就在 DeepSeek v3 发布一个月后,阿里云通义千问团队放出了 Qwen2.5 系列的最强旗舰模型——Qwen2.5-Max,在世界公认的 Arena 榜单上,超越 DeepSeek V3

Arena 榜单通过匿名方式将大模型两两配对,用户可以在不知情的情况下进行测试,依据实际对话体验来投票评价模型的能力。因此,Chatbot Arena LLM Leaderboard 被业界视为最公正和权威的榜单之一,也是全球顶级大模型的重要竞赛平台。

不仅是 Arena 榜单,在包括 LiveBench、LiveCodeBench、GPQA-Diamond 和 MMLU-Pro 在内的多个基准测试中,Qwen2.5-Max 全面超越了 DeepSeek-V3。

,DeepSeek V3 的王座还没坐稳,仅仅一个月就被通义的新旗舰取代了吗?

同时,Qwen2.5-Max 在数学和编程等单项能力上排名第一,在硬提示(Hard prompts)方面排名第二。

图片

那让我们来试试qwen2.5-max的效果吧

测试编程

帮我写一个 调用 大模型 的api接口,使用python 的fastapi包

效果

from fastapi import FastAPI, HTTPException``2from pydantic import BaseModel``3import requests  # 假设我们通过HTTP请求与外部大模型服务通信``4``5app = FastAPI()``6``7# 定义数据模型``8class TextRequest(BaseModel):``9    text: str``10``11class PredictionResponse(BaseModel):``12    prediction: str``13``14# 模拟的大模型服务函数``15def mock_model_service(text: str) -> str:``16    # 在这里你应该实现实际的逻辑来调用你的大模型服务``17    # 例如:response = requests.post('http://your-model-service-url', json={"text": text})``18    # 然后解析 response 并返回相应的预测结果``19    return f"这是对 '{text}' 的预测结果"``20``21@app.post("/predict", response_model=PredictionResponse)``22async def predict(request: TextRequest):``23    try:``24        # 调用模型服务``25        result = mock_model_service(request.text)``26        return {"prediction": result}``27    except Exception as e:``28        raise HTTPException(status_code=500, detail=f"内部错误: {str(e)}")``29``30if __name__ == "__main__":``31    import uvicorn``32    uvicorn.run(app, host="0.0.0.0", port=8000)

整体结果没问题,填上自己的业务逻辑基本上可用,qwen2.5-max的使用界面上还有执行效果,大家也可以试试,我这个没有界面,就不演示了

逻辑推理测试

题目
题目: 有三个人,小张、小李和小王,他们分别在不同的时间完成了一项任务。``已知以下条件: 1. 小张比小李早完成任务。 2. 小王不是最后一个完成``任务的人。 3. 小李比小王晚完成任务。 问题: 请根据以上条件,推理出三个``人完成任务的顺序,并说明推理过程。

测试结果

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值