上一次分享了dify接入fastgpt知识库,收到部分朋友的反馈--想了解dify外接ragflow的效果。
以及,还有一些朋友反馈说dify v1.0.0存在不少问题,所以大家都回退到之前版本了。
好消息是:dify最近已经更新到了v1.0.1版本(更新/修复内容如下)
所以,响应大家的号召,今天就给大家带来dify外接ragflow知识库的详细步骤,一起看看接入之后效果到底怎么样~
顺便带大家一起把本地的dify升级到最新的v1.0.1版本。
本期使用的dify和ragflow都是使用docker本地部署的
dify v1.0.0升级到最新v1.0.1
我们先把本地的dify升级成最新v1.0.1版本(我的dify目前还是v1.0.0)
PS:本次升级仅适用于docker部署方式
先进入dify源码所在根目录/docker目录下,把docker-compose.yaml文件备份一个副本。
然后去github上面下载dify v1.0.1最新的docker-compose.yaml文件。
把docker目录下旧的docker-compose.yaml替换掉
没有科学上网的朋友也可以在公众号后台私信:“dify1.0.1” 获取最新v1.0.1版本的docker-compose.yaml文件
替换之后在地址栏输入cmd 回车,进入docker-compose.yaml所在目录的控制台。
在控制台执行docker-compose up -d
直到出现如下日志,就代表升级启动成功啦
这时候我们访问dify页面:127.0.0.1
点击右上角头像,下拉框中可以看到已经成功升级到v1.0.1了
dify外接ragflow知识库
首先我们需要解决一个问题,就是在本地的ragflow和dify的页面默认的访问端口是有冲突的(用的都是80和443端口)。
如果不解决这个问题就会导致某一方无法正常启动。
我的解决方案是修改ragflow的默认端口,可以参考我的ragflow配置(如下:在docker-compose.yml里面把ragflow映射到主机的端口改掉,改成容器的80端口映射到主机的8000端口,433端口映射到主机的4333端口)
这样就不会和dify的主机端口冲突了
docker-compose.yml有改动的话
需要重新执行docker-compose up -d来重置服务使配置生效(执行位置还是要在docker-compose.yml所在的当前路径)。
重置ragflow之后,我们就可以通过:127.0.0.1:8000 来访问ragflow的页面了。
并且ragflow官方已经提供了dify外接知识库的接口,所以不需要像之前dify外接fastgpt那样自己开发一套适配程序了。
接下来的整个对接过程非常丝滑~
首先,我们需要去拿到ragflow的三个要素:
知识库的api地址、apikey、知识库id
点击ragflow右上角头像->API->API KEY->创建新密钥(复制备用)
并把 API服务器地址 复制备用
我准备把下面 ragflow中的内存条商品表知识库,外接到dify
点击进入
在路径栏中复制知识库id 备用
回到dify这边
在知识库->外部知识库->添加外部知识库
name随便填一个
API Ednpoint:填写http://<ragflow地址>:9380/api/v1/dify
apikey填写刚才在ragflow创建好的apikey,点击保存
PS:由于我的dify和ragflow都部署在同一个主机的docker中,所以dify可以通过主机的内网ip访问ragflow的知识库。
windows可以通过在控制台输入ipconfig找到本机内网ip
Linux可以输入ifconfig找到本机内网ip
保存成功的话,会有成功的提示,并且在外部知识库中会增加一条
点击连接外部知识库
按照下图,填写好信息
TopK 和 相似度阈值自行根据需要调整,最后点击连接
就创建成功啦
接下来我们测试看看~
创建一个空白应用,关联刚刚创建的 ragflow-内存条商品表知识库
这里我没有开启重排(不过大家后续使用也可以开启,测试效果)
我在ragflow和dify两边都创建了测试应用(参数都调整到相同状态)
测试了一下(下图,左边dify,右边ragflow)
AUTUMN
我检查了原表格数据,确实表格里面所有海盗船内存条中仅有一种是32G的。
回答挺准的,两边效果一致!目标达成。
本次仅测试知识库问答效果,不对内存条产生购买建议
dify借助ragflow很大程度弥补了知识库解析、知识库问答效果的不足,最方便的是ragflow官方本身就支持了dify的外部知识库API。
这样接入还挺丝滑的,非常推荐!
想要博主分享什么干货内容,可以打在评论区~
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓