Dify v1.0.1搭配Ragflow知识库:轻松封神之路【入门必看教程】

上一次分享了dify接入fastgpt知识库,收到部分朋友的反馈--想了解dify外接ragflow的效果。

图片

图片

以及,还有一些朋友反馈说dify v1.0.0存在不少问题,所以大家都回退到之前版本了。

图片

好消息是:dify最近已经更新到了v1.0.1版本(更新/修复内容如下)

图片

所以,响应大家的号召,今天就给大家带来dify外接ragflow知识库的详细步骤,一起看看接入之后效果到底怎么样~

顺便带大家一起把本地的dify升级到最新的v1.0.1版本。

本期使用的dify和ragflow都是使用docker本地部署的

dify v1.0.0升级到最新v1.0.1

我们先把本地的dify升级成最新v1.0.1版本(我的dify目前还是v1.0.0)

PS:本次升级仅适用于docker部署方式

先进入dify源码所在根目录/docker目录下,把docker-compose.yaml文件备份一个副本。

图片

然后去github上面下载dify v1.0.1最新的docker-compose.yaml文件。

把docker目录下旧的docker-compose.yaml替换掉

图片

没有科学上网的朋友也可以在公众号后台私信:“dify1.0.1” 获取最新v1.0.1版本的docker-compose.yaml文件

替换之后在地址栏输入cmd 回车,进入docker-compose.yaml所在目录的控制台。

图片

在控制台执行docker-compose up -d

图片

直到出现如下日志,就代表升级启动成功啦

图片

这时候我们访问dify页面:127.0.0.1

点击右上角头像,下拉框中可以看到已经成功升级到v1.0.1了

图片

图片

dify外接ragflow知识库

图片

首先我们需要解决一个问题,就是在本地的ragflow和dify的页面默认的访问端口是有冲突的(用的都是80和443端口)。

如果不解决这个问题就会导致某一方无法正常启动。

我的解决方案是修改ragflow的默认端口,可以参考我的ragflow配置(如下:在docker-compose.yml里面把ragflow映射到主机的端口改掉,改成容器的80端口映射到主机的8000端口,433端口映射到主机的4333端口)

这样就不会和dify的主机端口冲突了

图片

docker-compose.yml有改动的话

需要重新执行docker-compose up -d来重置服务使配置生效(执行位置还是要在docker-compose.yml所在的当前路径)。

图片

重置ragflow之后,我们就可以通过:127.0.0.1:8000 来访问ragflow的页面了。

图片

并且ragflow官方已经提供了dify外接知识库的接口,所以不需要像之前dify外接fastgpt那样自己开发一套适配程序了。

接下来的整个对接过程非常丝滑~

首先,我们需要去拿到ragflow的三个要素:

知识库的api地址、apikey、知识库id

点击ragflow右上角头像->API->API KEY->创建新密钥(复制备用)

并把 API服务器地址 复制备用

图片

我准备把下面 ragflow中的内存条商品表知识库,外接到dify

点击进入

图片

在路径栏中复制知识库id 备用

图片

回到dify这边

在知识库->外部知识库->添加外部知识库

图片

name随便填一个

API Ednpoint:填写http://<ragflow地址>:9380/api/v1/dify

apikey填写刚才在ragflow创建好的apikey,点击保存

图片

PS:由于我的dify和ragflow都部署在同一个主机的docker中,所以dify可以通过主机的内网ip访问ragflow的知识库。

windows可以通过在控制台输入ipconfig找到本机内网ip

图片

Linux可以输入ifconfig找到本机内网ip

图片

保存成功的话,会有成功的提示,并且在外部知识库中会增加一条

图片

点击连接外部知识库

图片

按照下图,填写好信息

TopK 和 相似度阈值自行根据需要调整,最后点击连接

图片

就创建成功啦

图片

接下来我们测试看看~

创建一个空白应用,关联刚刚创建的 ragflow-内存条商品表知识库

图片

这里我没有开启重排(不过大家后续使用也可以开启,测试效果)

图片

我在ragflow和dify两边都创建了测试应用(参数都调整到相同状态)

测试了一下(下图,左边dify,右边ragflow)

图片

AUTUMN

图片

图片

我检查了原表格数据,确实表格里面所有海盗船内存条中仅有一种是32G的。

图片

回答挺准的,两边效果一致!目标达成。

本次仅测试知识库问答效果,不对内存条产生购买建议

dify借助ragflow很大程度弥补了知识库解析、知识库问答效果的不足,最方便的是ragflow官方本身就支持了dify的外部知识库API。

这样接入还挺丝滑的,非常推荐!

想要博主分享什么干货内容,可以打在评论区~

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,我现在需要帮助用户解决Dify 1.1.3调用RAGFlow 0.17.2时知识库召回异常的问题。用户提到RAGFlow中内容可以正常召回,但Dify中为空,这说明问题可能出在两者的集成配置或数据传输环节。 首先,我需要回忆DifyRAGFlow集成的常见问题。根据用户提供的引用[1]、[2]、[3],他们提到了Docker容器的启动、环境配置和Python版本的要求。可能的故障点包括API连接配置错误、数据同步问题、权限或网络限制,以及版本兼容性。 第一步应该检查API配置是否正确。用户需要确认Dify中的RAGFlow API地址是否正确,包括协议(HTTP/HTTPS)、端口是否开放。比如,如果RAGFlow运行在8080端口,Dify的配置是否指向这个端口。同时,检查.env文件中的环境变量是否有误,特别是RAGFLOW_API_URL和认证密钥是否匹配。引用[3]提到要修改后端的环境配置,所以这里需要仔细核对。 接下来,查看日志是关键。使用docker logs -f ragflow-server查看RAGFlow的日志,确认是否有来自Dify的请求,并检查响应状态码是否为200。如果出现4xx或5xx错误,说明请求有问题或服务端错误。同样,查看Dify的日志,看是否有调用RAGFlow API时的错误信息,比如连接超时或解析响应失败。引用[1]和[2]都提到了检查服务器状态的方法,用户应该执行这些命令来获取详细信息。 数据同步方面,需要确认在RAGFlow上传文档后,是否完成了索引构建。有时候文档处理需要时间,如果索引未完成,Dify可能无法召回内容。此外,确认Dify中创建的知识库名称与RAGFlow中的完全一致,包括大小写,避免名称不匹配导致找不到数据。 网络和权限方面,确保Dify容器能够访问RAGFlow的API地址,没有防火墙或安全组规则阻止请求。使用curl命令在Dify容器内测试连通性,比如curl http://ragflow:8080/api,看是否能收到响应。同时,检查认证密钥是否正确配置在双方的环境变量中,避免认证失败。 版本兼容性也不能忽视。Dify 1.1.3和RAGFlow 0.17.2可能存在接口不兼容的情况,需要查阅官方文档确认这两个版本的兼容性。如果有要,升级到推荐搭配的版本,比如Dify 1.2.x和RAGFlow 0.18.x,可能会解决问题。 最后,如果以上步骤都没问题,尝试重新构建知识库索引,并清理Dify的缓存,有时候缓存会导致数据不一致。或者,联系DifyRAGFlow的技术支持,提供详细的日志信息以便进一步排查。 总结下来,可能的解决步骤包括检查配置、查看日志、验证数据同步、测试网络连接、确认版本兼容性,以及重新构建索引。需要一步步排除可能的原因,从最明显的配置错误开始,逐步深入。</think>### DifyRAGFlow集成知识库召回异常排查指南 #### 一、检查API连接配置 1. **确认RAGFlow API地址正确性** 检查Dify配置文件中RAGFlow的API地址是否符合以下要求: - 协议需统一(HTTP/HTTPS) - 端口是否开放(默认8080) - 域名/IP是否可解析 *示例配置:* ```python # Dify.env文件 RAGFLOW_API_URL=http://your_ragflow_server:8080/api ``` 引用[3]中提到的`.env`配置文件需要特别注意路径正确性。 2. **验证认证密钥匹配性** 对比双方服务的认证密钥是否一致: ```bash # RAGFlow配置检查 grep API_KEY ragflow/config.yml # Dify配置检查 grep RAGFLOW_API_KEY dify/.env ``` #### 二、日志排查关键点 1. **RAGFlow服务日志分析** 执行`docker logs -f ragflow-server`[^1][^2],重点观察: - 是否收到Dify的请求(搜索`/api/search`接口) - 响应状态码是否为200 - 返回结果中的`content`字段是否包含数据 2. **Dify服务日志验证** 在Dify容器中执行: ```bash docker logs -f dify-worker | grep "RAGFlow response" ``` 关注以下异常模式: ```log [ERROR] Failed to parse RAGFlow response # 响应解析失败 [TIMEOUT] RAGFlow API request timeout # 请求超时 ``` #### 三、数据同步验证流程 1. **索引构建状态确认** 通过RAGFlow管理接口检查文档状态: ```bash curl -X GET http://ragflow:8080/api/documents?status=processed ``` 确保目标文档的`processing_status`为`completed`。 2. **知识库元数据比对** 使用API工具对比双方知识库信息: ```bash # RAGFlow知识库列表 curl http://ragflow:8080/api/knowledgebases # Dify知识库列表 curl http://dify:5000/api/knowledgebases ``` 需保证`kb_name`字段完全一致(包括大小写)。 #### 四、网络连通性测试 在Dify容器内执行诊断命令: ```bash docker exec -it dify-worker sh # 测试基础连通性 ping ragflow # 测试API可达性 curl -v http://ragflow:8080/api/health # 测试带认证请求 curl -H "Authorization: Bearer $RAGFLOW_API_KEY" http://ragflow:8080/api/search -d '{"query":"test"}' ``` #### 五、版本兼容性处理 当前版本组合存在已知问题,建议升级方案: ``` Dify 1.1.3 ➔ 1.2.0 (需Python 3.11[^3]) RAGFlow 0.17.2 ➔ 0.18.1 ``` 升级后需重新初始化知识库索引。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值