2025创新方向:SHAP可解释性+聚类分析

2025深度学习发论文&模型涨点之——SHAP可解释性+聚类分析

传统的SHAP方法主要关注于个体样本的解释,难以揭示数据集中潜在的全局结构和模式。为了弥补这一不足,研究者们开始探索将SHAP与聚类分析相结合,以期在保持局部解释能力的同时,挖掘数据中的全局特征重要性分布和群体差异。这种结合不仅能够帮助研究者更好地理解模型的整体行为,还能为特征工程、模型优化和决策制定提供更全面的指导。

我整理了一些SHAP可解释性+聚类分析【论文+代码】合集,需要的同学公人人人号【AI创新工场】发525自取。

论文精选

论文1:

Shapley-based Explainable AI for Clustering Applications in Fault Diagnosis and Prognosis

基于 Shapley 值的可解释人工智能在故障诊断和预测中的聚类应用

方法

Shapley 值分析:利用 SHAP 和蒙特卡洛采样方法计算 Shapley 值,以量化特征对模型预测的贡献。

UMAP 降维:使用 Uniform Manifold Approximation and Projection 技术将高维数据投影到低维嵌入空间,以便于可视化和聚类。

HDBSCAN 聚类:采用 Hierarchical Density-Based Spatial Clustering of Applications with Noise 算法进行聚类,自动确定聚类数量并排除噪声点。

SkopeRules 规则生成:利用 SkopeRules 方法生成高精度的决策规则,以描述聚类结果并提高可解释性。

图片

创新点

扩展 Shapley 基聚类到半监督学习:首次将 Shapley 值应用于半监督聚类框架,解决了实际工业应用中标签数据稀缺的问题。例如,在半导体制造案例中,仅使用 1.6% 的标记数据,Shapley 基解释的聚类将未聚类样本比例从 2% 降低到 0.1%。

高精度决策规则:在故障诊断和预测中,生成的决策规则具有高精度(超过 0.85),并且规则简洁(最多包含两个特征)。例如,在涡轮风扇发动机预测性维护案例中,12 个聚类规则中有 12 个的精度超过 0.85。

多案例验证:通过两个不同的工业案例(半导体制造和涡轮风扇发动机退化)验证了方法的有效性,展示了该方法在不同数据类型和应用场景中的灵活性。

图片

论文2:

Beyond explainingXAI-based AdaptiveLearning with SHAP Clustering for EnergyConsumption Prediction

超越解释:基于XAI的自适应学习与SHAP聚类在能源消耗预测中的应用

方法

SHAP聚类:利用SHAP值对模型预测进行解释,并通过DBSCAN聚类算法对SHAP值进行聚类,以识别不同的模式和异常值。

质量指标提取:通过轮廓系数、噪声聚类的存在性等指标来评估聚类的质量,并为模型优化提供依据。

模型自适应优化:根据SHAP聚类的特征,通过调整模型的超参数(如最大深度和正则化参数)来优化模型,提高其泛化能力和解释性。

图片

创新点

SHAP聚类的应用:首次将SHAP聚类应用于回归问题,通过聚类SHAP值识别数据中的不同模式,显著提高了模型对数据分布变化的适应性(例如在COVID-19疫情期间能源消耗模式的变化)。

模型性能提升:与传统的自动化超参数调整(AHT)方法相比,SCAL方法在测试集上的均方根误差(RMSE)降低了约10%-30%,R²值提高了约5%-15%,表明模型对未见数据的泛化能力更强。

解释空间的优化:通过SHAP聚类优化解释空间,提高了模型解释的可理解性和透明度,同时通过减少噪声聚类,进一步提升了模型的鲁棒性。

跨领域适用性:该方法不仅适用于能源消耗预测,还在金融困境预测(分类问题)和电力消耗预测(回归问题)中展示了良好的迁移性和性能提升。

图片

论文3:

K-SHAP Policy Clustering Algorithm for Anonymous Multi-Agent State-Action Pairs

K-SHAP:匿名多智能体状态-动作对的策略聚类算法

方法

全局策略学习:通过模仿学习(IL)任务,学习一个能够模仿所有智能体行为的全局策略(world-policy),该策略能够根据不同的环境状态输出相应的动作。

SHAP值解释:利用SHAP值对全局策略进行解释,计算每个状态特征对动作的贡献,从而得到每个匿名观测的SHAP值向量。

K-Means聚类:将SHAP值向量作为新的特征空间,使用K-Means算法对观测进行聚类,以识别不同的智能体策略。

图片

创新点

匿名状态-动作对的聚类:首次提出针对匿名多智能体状态-动作对的策略聚类方法,解决了金融等领域的数据匿名性问题。

性能提升:在合成市场数据和真实金融数据上,K-SHAP的聚类性能显著优于现有方法。例如,在合成数据的聚类任务中,K-SHAP的调整兰德指数(ARI)和归一化互信息(NMI)比其他方法高出约2-3倍。

SHAP值的优势:通过SHAP值将状态特征统一到相同的度量空间,简化了聚类过程,提高了聚类的准确性和效率。

适应性:该方法不仅适用于金融市场数据,还可以扩展到其他需要匿名行为分析的领域,如军事和网络安全。

图片

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值