【动手学轨迹预测】1.6 常用数据集: Waymo Open Dataset

上一节提到了, 评价轨迹预测结果优劣需要有agent的真值, 那么如此大数据量的真值如何获取呢? 有一些开源机构在线上公布了他们采集到的数据集, 本节将介绍轨迹预测常用的一些数据集.

Waymo Open Dataset是Waymo公司为了促进自动驾驶技术、机器感知和相关领域的研究而公开发布的一个大型数据集。该数据集包含了Waymo自动驾驶车队在多个城市和郊区环境中收集的高分辨率传感器数据,涵盖了白天和夜晚、晴天和雨天等多种天气和光照条件下的驾驶场景。

对于轨迹预测需要使用Waymo Motion数据集分为: 70%的训练集(training)、15%的测试集(testing)和15%的验证集(validation)。

https://images.ctfassets.net/e6t5diu0txbw/5F0OTYxcAhO8AFOqWSinuY/90c849459a962141d105ea120de30168/unnamed.gif?fm=webp

Waymo每年都会举办Motion Prediction Challenge, 论文作者可以将自己的模型提交官方测试, 2024参赛模型的表现排行榜如图:

测试集的真值对参赛者是隐藏的。因此,测试集仅包含1秒的历史数据。而训练集和验证集则包含用于模型开发的地面真实未来数据。此外,测试集和验证集还提供了场景中最多8个对象轨迹的列表以供预测。这些对象轨迹的选择旨在包含有趣的行为和平衡的对象类型。

1.6.1 数据格式

Waymo Motion数据集由103,354个片段组成,每个片段包含20秒的对象轨迹,采样率为10Hz,以及覆盖该片段区域的地图数据。这些片段进一步被分割成9秒的时间窗口(包含1秒的历史数据和8秒的未来数据),且这些窗口之间存在不同的重叠。数据以两种形式提供:

  • 以Scenario ****protos buffers存储
  • 将Scenario ****Protocol Buffers转换为 tf.Example protos,其中包含用于构建模型的张量

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值