自动驾驶常见名词

DLA(deep learning accelerator):基于深度学习的芯片,也被称为深度学习加速器,即深度神经网络(DNNs),它模拟生物神经系统并并行执行计算,目前大多数研究人员只关心加速现有的深度学习算法,并不太关心神经形态学原理,主要关注性能的最大化,同时关心如何突破商业冯·诺依曼硬件架构的限制,如何在能效和性能上超越GPU;

GPU(graphics processing unit):图形处理器,又称显示芯片,是一种专门做图像和图形相关运算工作的微处理器

NPU(neural-network processing units):(嵌入式神经)网络处理器,采用“数据驱动并行计算”的架构,特别擅长处理视频、图像类的海量多媒体数据;

NPC:NPU Cluster;

RSU(Real time Scheduling Unit):NPC资源管理的实时调度单元;

APU(Application Processor CPU):应用处理器:

CDTU(Cluster Data Transfer Unit):集群数据传输单元,负责L2和L3(DDR内存)之间数据移动和传输;

CSYNC(Cluster sync):多处理器同步;

内存带宽(Memory Bandwidth):数据在CPU以及内存间传送所花的时间通常比处理器执行功能所花的时间更长,为此缓冲区被广泛应用,所谓的缓冲器就是CPU中的一级缓存二级缓存,它们是内存这座“大桥梁”与CPU之间的“小桥梁”。事实上,一级缓存与二级缓存采用的是SRAM,可以将其宽泛地理解为“内存带宽”,计算公式:带宽=总线宽度×总线频率×一个时钟周期内交换的数据包个数,带宽一般换算为GBps;

DDR(Double Data Rate SDRAM):双倍速率的SDRAM,SDRAM在一个CLK周期传输一次数据,而DDR在一个CLK周期传输两次数据,分别在上升沿和下降沿各传输一次数据;

SDRAM(synchronous dynamic random-access memory):同步动态随机存取内存,是有一个同步接口动态随机存取内存DRAM),SDRAM有一个同步接口,在响应控制输入前会等待一个时钟信号,这样就能和计算机的系统总线同步;

DRAM(Dynamic Random Access Memory):一种半导体存储器(例如系统主内存),主要的作用原理是利用电容内存储电荷的多寡来代表一个二进制比特(bit)是1还是0,由于在现实中晶体管会有漏电电流的现象而导致数据毁损,周期性地充电是一个无可避免的要件;

SRAM(Static Random-Access Memory):静态随机存取存储器(例如缓存),所谓的“静态”,是指这种存储器只要保持通电,里面储存的数据就可以恒常保持,相对之下,动态随机存取存储器(DRAM)里面所储存的数据就需要周期性地更新,当电力供应停止时,SRAM储存的数据会消失;

DMA(Direct Memory Access):直接存储器访问,它允许不同速度的硬件装置来沟通,而不需要依赖于CPU 的大量中断负载,DMA传输将数据从一个地址空间复制到另外一个地址空间,DMA传输方式无需CPU直接控制传输,也没有中断处理方式那样保留现场和恢复现场过程,通过硬件为RAM和IO设备开辟一条直接传输数据的通道,使得CPU的效率大大提高;

DMA既可以指内存和外设直接存取数据这种内存访问的计算机技术,又可以指实现该技术的硬件模块即DMA控制器;

HAL(Hardware Abstraction Layer ):硬件抽象层,硬件抽象层定义为所有依赖于底层硬件的软件,将硬件差别与操作系统其他层相隔离的一薄层软件,它是通过采用使多种不同硬件在操作系统的其他部分看来是同一种虚拟机的做法来实现的;

Meta-tool:管理工具

toplevel directory:理解计算机文件系统的最快捷方法就是查看根目录,并查看所有的子目录,这些目录形成整个系统的骨干。就这一点而论,有时候也称他们为顶级目录;

BSW(basicsoftware):基础软件;

RTE(autosarruntimeenvironment):运行环境;

PDK(Process Design Kit):工艺设计套件或制程设计套件;

ESP(Electronic Stability Program):车身电子稳定系统;

ESP(Electric Power Steering):电动助力转向;

IBT(ibooster):制动的执行器;

OBD(On-Board Diagnostics):车载自动诊断系统;

BOX(Telematical Box):车辆网通信模块,4G和5G版本;

CDCU(Central Domain Control Unit):中央域控制器;

EEA(Electrical/Electronic Architecture):电子电气架构;

DCU(Domain Control Unit):域控制器。域控制器的概念是伴随着整车电子电器架构的发展演变而来的,传统的汽车电子电气架构都是分布式的,汽车里的各个ECU都是通过CAN和LIN总线连接在一起,现代汽车里的ECU总数已经迅速增加到了几十个甚至上百个之多,整个系统复杂度越来越大,几近上限。为了解决分布式EEA的这些问题,人们开始逐渐把很多功能相似、分离的ECU功能集成整合到一个比ECU性能更强的处理器硬件平台上,这就是汽车“域控制器”。

深度解读汽车域控制器:深度解读汽车域控制器

GMSL(Gigabit Multimedia Serial Links):千兆多媒体串行链路;

IPC(inter process communication):进程间通信;

<think>好的,我需要解释YOLO这个名词。首先,YOLO的全称是"You Only Look Once",这是计算机视觉领域的一个实时目标检测算法。接下来,我应该介绍它的主要特点,比如将目标检测视为回归问题,单次检测速度快,以及它的版本发展。 然后,要提到YOLO的基本原理,比如将图像划分为网格,每个网格预测边界框和类别概率。还要对比它与其他算法(如Faster R-CNN)的不同,强调速度优势。可能还需要提到应用场景,比如自动驾驶、安防监控等。 要确保使用正确的LaTeX格式,比如数学表达式用$...$,独立公式用$$...$$。同时保持结构清晰,分点说明。最后检查是否有遗漏的重要信息,比如优缺点或者最新版本的情况。</think>YOLO(You Only Look Once)是一种基于深度学习的实时目标检测算法,其核心思想是将目标检测任务转化为**单次全局回归问题**。以下是关键要点解析: $$检测流程 = 划分网格 + 预测边界框 + 分类概率$$ ### 核心特征 1. **单阶段检测**:与传统两阶段检测(如Faster R-CNN)不同,YOLO直接通过卷积神经网络输出: - 边界框坐标 $(x,y,w,h)$ - 物体置信度 $P(object)$ - 类别概率 $P(class|object)$ 2. **速度优势**:典型处理速度达45-155 FPS(根据版本不同),满足实时性需求 3. **全局推理**:通过$S \times S$网格划分(常见$7\times7$或$13\times13$),每个网格单元预测多个边界框 ### 版本演进 | 版本 | 主要改进 | mAP提升 | |--------|-----------------------------------|---------| | YOLOv1 | 基础框架建立 | 63.4 | | YOLOv2 | 引入锚框(anchor boxes) | 78.6 | | YOLOv3 | 多尺度预测 + Darknet-53主干网络 | 82.3 | | YOLOv4 | CSPDarknet + PANet + 自注意力机制 | 84.5 | | YOLOv5 | 工程优化 + 自适应锚框计算 | 85.3 | | YOLOv8 | 无锚框设计 + 动态标签分配 | 86.7 | ### 数学表达 对于每个网格单元预测$B$个边界框: $$ \text{输出维度} = S \times S \times [B \times (5 + C)] $$ 其中: - $5$对应$(x,y,w,h,\text{置信度})$ - $C$为类别数量 ### 应用领域 1. 自动驾驶:实时道路物体检测 2. 视频监控:异常行为识别 3. 工业质检:缺陷自动检测 4. 无人机:障碍物避让系统 ### 优势对比 - 较Faster R-CNN快10倍以上 - 参数量仅为RetinaNet的1/4 - 在Titan X GPU上可达150 FPS 最新版本YOLOv8在COCO数据集上达到86.7% mAP,同时保持端到端85 FPS的实时性能,体现了速度与精度的最佳平衡。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值