代谢组+基因组联合分析

本文探讨了代谢组学与全基因组关联分析的整合,如何通过结合定量代谢数据和大规模基因变异信息,深入理解疾病机制,提升复杂性状研究的效率。整合分析有助于揭示生物响应内外因素的分子细节,挑战在于有效整合多组学数据并应用于医学实践和药物研发。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代谢组+基因组联合分析

简介

代谢组学是定量描述生物内源性代谢物对内外因变化应答规律的科学,能够直接反映生命体的终端和表型信息,近年来在疾病诊断和分型、生物标志物发现、药物研发、基因功能解析、代谢途径及调控机理等领域发挥着重要作用。全基因组关联分析(Genome-wide association study,GWAS) 常常用于疾病表型与相关变异位点研究,全基因组关联分析利用全基因组重测序或外显子测序技术获取数以百万计的SNP分子标记,与表型数据进行联合分析,从中筛选出与疾病相关的SNP,发现影响复杂性状的基因变异。虽然通过GWAS技术已经识别了大量相关的基因组变异位点,并在实践中发现了许多关联基因,但却仅能解释遗传性状的一小部分,因为表型获取的数据有限,且大部分不能量化,大大局限了GWAS在基因定位和功能研究上的应用。

代谢组学与基因组学数据的整合分析,可获得更多可量化的数据,获得更全面的分子特征,病理生理状态、药物作用或应激扰动的变化信息,揭示疾病分子机制。代谢组学与基因组数据的整合研究可广泛应用到基础医学、临床诊断以及药物研发等领域的各个方面。目前,多组学信息的有效整合仍然是难点,需要系统生物学和计算机技术的共同进步。

分析流程
在这里插入图片描述

参考文献

  1. Tabassum R, et al. Genetic architecture of human plasma lipidome and its link to cardiovascular disease[J]. Nature Communications, 2019, 10(1):1-14.
  2. Constanze P, et al. New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18[J]. Scientific Reports, 2017, 7:42382.
### 使用 R 语言进行转录代谢整合分析 #### 数据准备 为了实现转录代谢数据的有效整合,通常需要先对这两类数据分别进行预处理。对于转录数据而言,这可能涉及读取测序文件、质量控制以及标准化表达量计算;而对于代谢,则需完成峰识别、定量及归一化操作。 ```r library(DESeq2) # 对于 RNA-seq 的差异表达分析 library(metaX) # 针对 LC-MS/MS 类型的非靶向代谢谱型实验设计专用工具箱 ``` #### 典型相关分析 (CCA) 通过典型相关分析可以探索两套多维特征集之间的关系模式,在此场景下即指代基因表达水平同代谢物浓度间的潜在联系。这种方法能够找出最能代表双方变异性的线性合,并使得这些合间具有最大化的协方差[^1]。 ```r # 假设已有经过前处理后的两个数据框 exprs metabo 分别存储着基因表达值代谢产物丰度测量结果 cca_result <- cancor(exprs, metabo) # 查看 CCA 结果摘要信息 summary(cca_result) ``` #### 可视化展示 利用图形手段直观呈现所发现的相关规律有助于加深理解并辅助后续生物学解释工作。热图是一种常用的方式用于表示样本聚类情况下的变量关联强度分布状况。 ```r heatmap(as.matrix(scale(t(exprs))), Colv=NA, Rowv=NA, col=colorRampPalette(c("blue","white","red"))(75), scale="none", margins=c(8,9), cexRow=.6, cexCol=.6) heatmap(as.matrix(scale(metabo)), Colv=NA, Rowv=NA, col=colorRampPalette(c("green","yellow","purple"))(75), scale="none", margins=c(8,9), cexRow=.6, cexCol=.6) ``` #### 生物学意义解析 最后一步是要基于统计模型输出的结果去挖掘背后隐藏的实际生理机制或病理过程。比如可以通过查阅文献来验证某些特定路径上是否存在已知的功能模块受到共同调控的现象。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值