0. 路径规划
路径规划是自动驾驶和机器人导航中的一个关键环节,它可以根据对环境信息的掌握程度被划分为两种主要类型:全局路径规划和局部路径规划。这两种规划方式在信息获取、规划策略和应用场景上有所不同。
-
全局路径规划:
- 信息获取: 全局路径规划是基于对环境的完全了解,即拥有先验的完整环境信息。
- 规划特点:这种规划方式 属于静态规划,因为它依赖于已知的环境地图信息,不需要实时更新。
- 规划方法:全局路径规划通常采用传统算法,这些算法包括:
- Dijkstra算法:一种基于图搜索的算法,可以找到从起点到终点的最短路径。
- A*算法:一种启发式搜索算法,它使用启发式函数来估计从当前节点到目标的成本,以找到最短路径。
- 应用场景:全局路径规划适用于环境结构相对固定,且能够提前获取完整地图信息的情况。
-
局部路径规划:
- 信息获取: 局部路径规划依赖于传感器实时采集的环境信息,这些信息可能包括静态或动态的障碍物。
- 规划特点:这种规划方式 属于动态规划,因为它需要根据实时的环境变化来调整路径。
- 规划方法:局部路径规划通常采用更灵活的算法,可以是传统的局部规划算法,也可以结合智能算法,如:
- PSO算法(粒子群优化):一种模拟鸟群社会行为的优化算法,用于寻找最优解。
- 遗传算法:一种基于自然选择和遗传学原理的搜索算法,用于解决优化问题。
- 强化学习:一种通过与环境的交互来学习最优行为策略的方法。
- 应用场景:局部路径规划适用于环境信息不完全已知,或者环境动态变化较大的情况。
在实际应用中,全局路径规划和局部路径规划往往需要结合使用。全局路径规划可以提供一个大致的路径方向,而局部路径规划则负责在接近目标的过程中,根据实时环境信息进行路径的细化和调整。这种组合使用的方法可以提高导航系统的鲁棒性和适应性。
1. 路径规划算法小结
算法 | 类别 | 应用场景 | 优点 | 缺点 | 实际使用情况 |
---|---|---|---|---|---|
A* | 全局路径规划 | 静态或半静态的仓库,全局导航 | 启发式加速,找到最优路径,计算速度较快 | 不适用于动态环境,受环境变化影响较大 | 静态或半静态仓库环境中的全局路径规划 |
Dijkstra | 全局路径规划 | 小区域的路径优化,已知障碍物位置的环境 | 找到最短路径,算法简单 | 计算速度较慢,适合短距离 | 小规模、特定路径场景中的最优路径计算 |
DWA | 局部路径规划 | 动态环境中实时避障 | 计算速度快,适合动态避障 | 只能局部规划,需结合全局规划 | 动态仓库环境中与移动障碍物(人、其他机器人)实时避障 |
RRT | 采样基路径规划 | 障碍物布局复杂的仓库,路径复杂的环境 | 高效生成路径,适合复杂环境 | 路径可能不是最优的 | 复杂、多变的仓库环境中路径快速生成 |
RRT* | 采样基路径规划 | 高效、安全路径规划的场景,如机器人协作搬运 | 提供逐渐收敛到最优的路径 | 计算复杂度较高 | 高效路径规划任务,尤其是在复杂障碍物环境中 |
PRM | 采样基路径规划 | 多次重复路径的仓库场景 | 多次路径查询效率高,适合固定路线 | 需要预先构建稀疏图,适用性有限 | 重复任务场景下的路径规划,如分拣机器人重复运输路径 |
VFH | 局部路径规划 | 障碍物较多的动态环境下局部导航 | 实时避障效果好,适合复杂环境 | 容易受障碍物密集度影响,可能出现局部最优 | 动态环境中的短距离避障任务,局部导航和障碍物绕行 |
1.2 算法小结总结:
- 全局路径规划:A* 和 Dijkstra 在已知环境中进行路径规划,适合仓库布局固定的场景。RRT* 提供路径优化,适合复杂场景。
- 局部路径规划:DWA 和 VFH 用于仓库中动态环境下的实时避障,适合与全局路径结合使用。
- 采样基算法:RRT 和 PRM 能应对复杂、多变或高维空间的环境,适合复杂障碍物或路径重复的任务。
通过结合全局和局部算法,仓储机器人能够灵活应对各种环境需求,平衡路径规划的效率与实时性。
机器人路径规划算法广泛用于导航和自主移动的任务中,帮助机器人在复杂环境中规划最佳路径,并实时避障。路径规划算法可以分为全局路径规划和局部路径规划。以下是一些经典的路径规划算法:
2. 全局路径规划算法
全局路径规划算法通常在已知环境或静态地图中使用,目的是找到从起点到目标点的最优路径。
2.1 Dijkstra 算法
- 特点:Dijkstra 算法是一种图搜索算法,适用于已知地图中无负权重的路径规划。它通过从起点开始遍历所有节点,找到到目标点的最短路径。
- 实现流程:
- 初始化起点的代价为 0,其余节点的代价为无穷大。
- 从起点开始,依次访问未访问过的节点,并更新邻居节点的代价。
- 继续选择代价最小的节点,直到找到目标点。
- 应用:适用于静态地图,计算速度较慢,但能保证找到最优路径。
2.2 A 算法*
- 特点:A* 是一种启发式搜索算法,它通过结合实际代价和启发式代价找到最优路径。与 Dijkstra 不同,A* 使用启发式函数(如曼哈顿距离或欧几里得距离)来加速搜索过程。
- 实现流程:
- 初始化起点,计算起点到目标点的启发式代价。
- 每次选择总代价(实际代价 + 启发式代价)最小的节点。
- 继续扩展该节点的邻居,直到找到目标点。
- 应用:广泛用于静态环境中的全局路径规划,具有较高的效率和最优性。
摘要
2.3 D Lite 算法*
- 特点:D* Lite 是一种适用于动态环境的增量路径规划算法,可以在地图发生变化时重新计算路径,而不需要从头开始规划。
- 实现流程:
- 基于 A* 算法的路径搜索。
- 当环境或地图发生变化时,增量更新路径,仅重新规划受影响的部分。
- 应用:适合动态环境下的路径规划,如移动机器人在未知或变化的环境中工作时。
3. 局部路径规划算法
局部路径规划算法用于实时避障和导航,通常在未知或动态环境中使用。
3.1 动态窗口法(DWA, Dynamic Window Approach)
- 特点:DWA 是一种局部避障算法,基于机器人的运动学约束和传感器数据生成可行轨迹,并选择安全、快速的轨迹。
动态窗口法(DWA, Dynamic Window Approach) 是一种用于移动机器人局部路径规划和避障的算法,特别适用于动态和未知环境。其核心思想是通过评估机器人在有限时间内的所有可能轨迹,选择一条安全且有效的路径,从而在避障的同时尽快接近目标。
1. 确定机器人运动模型
DWA的前提是了解机器人的运动学模型,即机器人在给定的速度和时间下能达到哪些运动状态。常见的差速驱动模型包括:
- 线速度 v v v(前进/后退)
- 角速度
ω
\omega
ω(转向)
运动学约束定义了机器人的最大速度、加速度和旋转速度等参数,这些约束用于限制可能的运动轨迹。
2. 计算动态窗口
机器人当前的速度、加速度以及系统的运动学约束决定了其下一时刻可能的速度范围,称为 动态窗口。动态窗口定义了在下一时间步内机器人可能的速度范围:
- 运动学窗口:基于机器人速度和加速度约束,确定当前时间内可能的速度范围 [ v m i n , v m a x ] [v_{min}, v_{max}] [vmin,vmax]和 [ ω m i n , ω m a x ] [\omega_{min}, \omega_{max}] [ωmin,ωmax]。
- 可达窗口:在动态窗口内进一步约束可能的轨迹,确保机器人不会超出自身物理极限,如突然加速或减速太快。
计算公式:
v
m
i
n
=
v
−
a
m
a
x
⋅
d
t
v
m
a
x
=
v
+
a
m
a
x
⋅
d
t
v_{min} = v - a_{max} \cdot dt \\ v_{max} = v + a_{max} \cdot dt
vmin=v−amax⋅dtvmax=v+amax⋅dt
类似地,角速度
ω
\omega
ω 也会被计算。
3. 轨迹生成
在动态窗口内,算法会为每个可能的速度对 ( v , ω ) (v, \omega) (v,ω) 生成轨迹。每条轨迹通过积分机器人的运动模型,预测机器人在未来一段时间内的位置和方向。常用的时间窗口为1-2秒,即生成这段时间内的所有可能路径。
4. 轨迹评估
生成的轨迹根据多个标准进行评分,通常包括:
- 安全性:轨迹是否与障碍物发生碰撞。如果某条轨迹靠近障碍物,则其安全性评分较低。
- 距离目标的接近程度:轨迹最终到达的位置与目标点的距离,距离越近,评分越高。
- 速度:选择速度较高的轨迹,尽可能使机器人快速移动,评分越高。
评价函数通常为多个因素的加权和形式,例如:
G
(
v
,
ω
)
=
α
⋅
h
e
a
d
i
n
g
(
v
,
ω
)
+
β
⋅
d
i
s
t
(
v
,
ω
)
+
γ
⋅
v
e
l
o
c
i
t
y
(
v
,
ω
)
G(v, \omega) = \alpha \cdot heading(v, \omega) + \beta \cdot dist(v, \omega) + \gamma \cdot velocity(v, \omega)
G(v,ω)=α⋅heading(v,ω)+β⋅dist(v,ω)+γ⋅velocity(v,ω)
其中:
- h e a d i n g ( v , ω ) heading(v, \omega) heading(v,ω)表示与目标方向的对齐程度;
- d i s t ( v , ω ) dist(v, \omega) dist(v,ω) 表示与障碍物的距离;
- v e l o c i t y ( v , ω ) velocity(v, \omega) velocity(v,ω) 表示轨迹速度;
- α , β , γ \alpha, \beta, \gamma α,β,γ为权重参数。
5. 选择最佳轨迹
根据评分函数的结果,选择得分最高的轨迹。该轨迹同时确保了机器人能够安全避开障碍物、快速朝向目标运动。
6. 执行控制指令
选定的轨迹对应于某个具体的速度 v 和角速度 ω \omega ω。这些速度作为控制指令发送到机器人的驱动器,机器人沿着该轨迹运动。
7. 重复循环
该算法在每个时间步都进行以上步骤的重新计算,以便实时调整机器人路径应对环境中的变化(例如动态障碍物的出现或目标位置的变化)。
3.1.2 DWA的特点
- 实时性:DWA可以在动态环境中进行实时计算,并根据环境变化做出反应。
- 局部最优:DWA每次只考虑局部范围内的最优路径,而不关心全局路径规划。这种局部路径规划适合动态避障,但在复杂环境中可能陷入局部最优解。
- 基于运动学约束:DWA充分考虑了机器人的运动学约束,生成的路径是物理可行的。
3.1.3 DWA的应用
- DWA通常用于移动机器人在复杂、动态环境中的局部避障,例如:
- 仓储机器人:在仓库中,机器人需要在动态障碍物(如其他机器人或人)中快速导航和避障。
- 服务机器人:在服务环境中,机器人需实时应对移动的人或动态物体,同时保持向目标移动。
3.2 VFH (Vector Field Histogram)
- 特点:VFH 是一种基于直方图的局部路径规划算法,分析机器人周围的障碍物分布,通过直方图生成导航方向。
- 实现流程:
- 使用传感器数据生成环境的障碍物直方图。
- 计算各个方向的可通过性,选择一个最佳方向。
- 调整机器人的运动方向,避开障碍物。
- 应用:适用于动态避障,特别是在复杂环境中进行局部规划。
3.3 人工势场法(Artificial Potential Field, APF)
- 特点:人工势场法通过将目标点设置为吸引力源,障碍物设置为排斥力源,机器人在这些力的作用下运动。
- 实现流程:
- 为目标点生成吸引力场,机器人在吸引力作用下向目标移动。
- 为障碍物生成排斥力场,机器人在排斥力作用下避开障碍。
- 合成吸引力和排斥力,计算机器人的运动方向。
- 应用:适合简单环境中的局部路径规划,但在复杂环境下可能出现局部最小值问题。
##4# 4. 采样基路径规划算法
采样基算法通过在环境中随机采样节点,连接生成路径,适合高维空间的路径规划问题。
4.1 RRT(Rapidly-exploring Random Tree)
- 特点:RRT 是一种基于随机采样的路径规划算法,适用于高维和复杂环境。通过在空间中随机生成树结构,快速探索可行路径。
- 实现流程:
- 从起点开始随机生成树节点,并尝试连接到已有树结构上。
- 不断扩展树,直到找到目标点。
- 提供一条可行路径,不一定是最优路径。
- 应用:适用于大规模、复杂环境的路径规划,如机器人手臂、无人机的路径规划。
4.2 RRT(优化版 RRT)*
- 特点:RRT* 是对 RRT 的改进,通过在采样过程中不断优化路径,逐渐收敛到最优路径。
- 实现流程:
- 在随机采样生成树节点后,尝试通过重新连接减少路径长度。
- 继续扩展树,同时优化路径质量。
- 提供逐渐接近最优的路径。
- 应用:适合高维复杂环境,特别是对路径质量有要求的场景。
3.3 PRM(Probabilistic Roadmap)
- 特点:PRM 也是基于随机采样的路径规划算法,适用于多次查询的场景。通过生成一个稀疏图来连接自由空间中的可行路径。
- 实现流程:
- 随机采样自由空间中的节点,并尝试连接邻近的节点,构建稀疏图。
- 当需要规划路径时,在图中搜索起点和终点间的最短路径。
- 应用:适合机器人在静态环境中的多次路径查询。
##5# 5. 栅格化方法
栅格化路径规划算法将环境离散为一个个栅格,适用于机器人在二维平面上的路径规划。
5.1 栅格搜索算法(Grid-based Search)
- 特点:基于栅格图的路径规划方法,例如 A* 和 Dijkstra 都可以在栅格地图上运行。栅格图将环境离散为网格,每个网格表示自由空间或障碍物。
- 实现流程:
- 将环境映射为栅格图。
- 在栅格图上运行路径搜索算法,如 A*。
- 应用:适用于机器人在平面环境中的路径规划任务。
5.2 总结
机器人路径规划算法有多种选择,具体的选择依赖于任务需求和环境的复杂度:
- 全局路径规划:A*、Dijkstra、D* Lite 适用于已知环境中的全局导航。
- 局部路径规划:DWA、VFH、APF 等适合在动态和未知环境中的局部避障与导航。
- 高维空间规划:RRT 和 PRM 等采样基算法适用于复杂、高维空间的路径规划任务。
在仓储机器人、自动驾驶车辆和无人机等领域,通常将全局规划与局部规划结合使用,以实现高效且灵活的导航系统。