科研绘图系列:R语言单细胞差异基因四分图(Quad plot)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!

介绍

在单细胞分析领域,为了探究不同分组间同一细胞类型的基因表达差异,研究者们常采用四分图(Quad Plot)作为分析工具。该图形的横轴代表比较组1,而纵轴代表比较组2。通过这种布局,四分图能够有效地展示两组间共有的差异表达基因,从而为深入理解细胞类型在不同条件下的分子特性提供直观的视角。这种可视化方法不仅揭示了组间基因表达的异同,还有助于识别可能在生物学过程或疾病发生中起关键作用的基因。

加载R包

导入所需要的R包,在导入前需要用户自己安装。

library(tidyverse)
library(Seurat)
library(ggrepel)

<think>我们使用MATLAB来生成一个简单的Voronoi。步骤如下: 1. 生成一组随机点(称为站点)。 2. 使用`voronoi`函数绘制Voronoi,或者使用`voronoin`函数获取Voronoi的顶点和区域信息,然后手动绘制。 3. 可视化结果。 下面是一个简单的示例代码: ```matlab % 生成随机点(站点) rng('default'); % 设置随机种子,保证可重复性 points = rand(20, 2); % 生成20个二维随机点,范围在[0,1]之间 % 绘制Voronoi voronoi(points(:,1), points(:,2)); % 添加标题和标签 title('简单Voronoi'); xlabel('X坐标'); ylabel('Y坐标'); grid on; ``` 这段代码会生成一个包含20个随机点的Voronoi。`voronoi`函数会自动计算并绘制。 ### 进阶:手动控制绘图 如果我们想要更多的控制,比如填充每个Voronoi单元,可以使用`voronoin`函数获取每个单元的信息,然后使用`patch`函数进行填充。 ```matlab % 生成随机点 points = rand(20, 2); % 计算Voronoi的顶点和单元 [V, C] = voronoin(points); % 创建一个新的形 figure; hold on; % 绘制每个Voronoi单元 for i = 1:length(C) vertices = V(C{i}, :); % 获取当前单元的所有顶点 if all(vertices(:,1) < inf) & all(vertices(:,2) < inf) % 只绘制有限区域 patch(vertices(:,1), vertices(:,2), rand(1,3)); % 用随机颜色填充 end end % 绘制原始点 plot(points(:,1), points(:,2), 'ko', 'MarkerFaceColor', 'k', 'MarkerSize', 4); % 设置坐标轴范围 axis([0 1 0 1]); title('填充颜色的Voronoi'); xlabel('X坐标'); ylabel('Y坐标'); hold off; ``` ### 说明 - `voronoi(x, y)`:直接绘制由点集`(x,y)`生成的Voronoi。 - `voronoin`:返回Voronoi的顶点`V`和单元`C`。`C`是一个元胞数组,每个元胞包含一个Voronoi单元对应的顶点索引。 - 由于Voronoi在边界处会产生无限区域(顶点包含无穷远点),我们在绘制时通过条件`all(vertices(:,1) < inf) & all(vertices(:,2) < inf)`过滤掉这些无限区域。 ### 数学基础 给定一组点(称为站点)$P = \{p_1, p_2, \dots, p_n\}$,其中$p_i \in \mathbb{R}^2$,则点$q$属于$p_i$的Voronoi单元当且仅当: $$ \|q - p_i\| \leq \|q - p_j\|, \quad \forall j \neq i $$ 即,该单元包含所有距离$p_i$最近的点。 ### 应用 Voronoi在多个领域有广泛应用,例如: 1. **地理信息系统**:划分服务区域(如邮局、医院)[^1]。 2. **计算机形学**:生成自然纹理或破碎效果。 3. **机器人学**:路径规划中的区域划分。 §§相关问题§§ 1. 如何在MATLAB中为Voronoi添加边界约束(如矩形边界)? 2. Voronoi在三维空间中如何用MATLAB绘制? 3. 如何计算Voronoi单元的面积?</think>在 MATLAB 中创建简单的 Voronoi 非常简单直观。以下是详细步骤和代码实现: ### 基本实现方法 ```matlab % 1. 生成随机点集(种子点) points = rand(20, 2); % 生成20个二维随机点,范围[0,1] % 2. 绘制Voronoi voronoi(points(:,1), points(:,2)); % 绘制Voronoi hold on; % 保持当前形 % 3. 添加种子点标记 plot(points(:,1), points(:,2), 'ro', 'MarkerFaceColor', 'r'); % 红色填充点 % 4. 添加标题和标签 title('简单Voronoi'); xlabel('X坐标'); ylabel('Y坐标'); grid on; axis equal; % 保持坐标轴比例一致 ``` ### 关键函数说明 1. `rand(n, 2)`:生成 n 个二维随机点,坐标范围 [0,1] 2. `voronoi(x, y)`:根据点集 (x,y) 绘制 Voronoi 3. `plot(x, y, 'ro')`:绘制红色圆点标记种子点位置 ### 进阶功能:控制边界和样式 ```matlab % 生成点集(在指定范围内) x = 10 * rand(30, 1); % X坐标范围[0,10] y = 5 * rand(30, 1); % Y坐标范围[0,5] % 绘制Voronoi并设置样式 [vx, vy] = voronoi(x, y); % 获取Voronoi边界的顶点 plot(vx, vy, 'b-', 'LineWidth', 1.5); % 蓝色边界线 hold on; plot(x, y, 'ko', 'MarkerFaceColor', 'g', 'MarkerSize', 8); % 绿色填充点 % 设置坐标轴范围和标题 axis([0 10 0 5]); % 设置坐标轴范围 title('带边界约束的Voronoi'); xlabel('X'); ylabel('Y'); grid on; ``` ### 数学原理 Voronoi 将平面划分为多个区域,每个区域包含距离特定种子点最近的所有点。数学上定义为: $$ V(p_i) = \{ x \in \mathbb{R}^2 \mid \|x - p_i\| \leq \|x - p_j\|, \forall j \neq i \} $$ 其中 $p_i$ 是种子点集中的一个点[^1]。 ### 应用场景 1. **地理分析**:划分服务区域(如消防站覆盖范围) 2. **无线网络**:基站信号覆盖区域划分 3. **生物建模**:模拟细胞生长模式 4. **数据可视化**:空间数据聚类展示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值