实现简易避障(附C++源码):opencv提取语义分割后的图像区域质心

前言

似乎很久没有写博客了……所以赶紧写个博客冒冒泡,也顺便压压惊。最近导师让我使用realsense深度摄像头做android端的避障功能,首先,遍历图像中所有深度数据并进行过滤似乎是比较需要大量的计算量,在查找了一些资料之后,因为项目也用到了语义分割功能,何不使用语义分割后的图像进行轮廓、区域、质心提取,再计算质心坐标的深度值来进行避障呢?

说干就干,由于语义分割是在android端采集的,采用了deeplabv3算法,其中该算法工程参考:
https://github.com/wonderit/indoor-segmentation-android

处理图像使用opencv就行了,由于移动端相对来说比较麻烦,还要移植opencv,所以我先把deeplab获得的分割图像存入电脑,在电脑端使用C++和opencv对其进行处理,得到最后的质心。

获取语义分割图

下图是未经处理的rgb图:
在这里插入图片描述
下图是经过deeplab算法得到的语义分割图,可以看到不同的颜色代表着不同的东西,其中暗红色代表地面,灰色代表墙,深灰色代表凳腿右下角的箱子,紫色代表凳子,要进行避障,就得把这些区域的质心提取出来。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值