老猿学5G:融合计费场景的离线计费会话的Nchf_OfflineOnlyCharging_Create创建操作

本文详细解析了5G网络环境下,从用户发起上网请求到完成离线计费会话创建的全过程。包括PDU会话建立、用户鉴权、动态PCC策略控制、SMF选择UPF和服务策略执行,以及最终通过Nchf_OfflineOnlyCharging_Create消息授权用户启动PDU会话,实现离线计费。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

☞ ░ 前往老猿Python博文目录

一、Nchf_OfflineOnlyCharging_Create消息交互流程

Nchf_OfflineOnlyCharging_Create服务化操作请求是5G融合计费的离线计费中CTF向CHF请求服务使用的初始化请求(英文原文:request initial report of service usage)。该请求操作是在UE还未存在计费数据资源的情况下发起,其过程如下:
在这里插入图片描述

对应步骤文字描述如下:

  1. CTF项CHF发送Nchf_OfflineOnlyCharging_Create request请求,要求建立开始计费的资源;
  2. CHF操作成功,则回复相应消息为"201 Created"。在这个回复消息内包含了一个位置头字段(Location header field )。位置头字段包含创建资源的URI。CTF在同一PDU会话中后续往CHF提交请求时需要使用该URI;
  3. 在请求失败或重定向时,需要返回对应状态的HTTP响应码。

二、用户发起上网后的离线会话创建过程

  1. 用户需要上网时,用户UE向AMF发起PDU会话建立流程,PDU会话会包含PDU会话ID、PDU类型(IPV4、IPV6等)、SSC(session and service continuity)模式、用户位置信息和接入类型
    注:在5G网络的工作模式下,用户终端通过创建的PDU会话来进行数据的通信,用户可以同时创建并使用多个PDU会话。用户终端UE通过特定的PDU会话与应用服务器建立连接,也就是采用了该PDU会话对应的SSC模式。SSC模式是用于保障用户移动场景下会话或业务的连续使用模式,有三种模式,具体可参考《5G系统——SSC模式》。
  2. AMF选择SMF,并向SMF发起PDU会话建立请求(Nsmf_PDUSession_CreateSMContext Request);
  3. SMF基于基于SUPI、DNN以及默认的Qos向UDM发起用户数据请求;
  4. UDM及AUSF进行用户鉴权和会话授权;
  5. 在存在动态PCC策略控制的情况下,SMF选择PCF并请求PCC规则;
  6. SMF选择为用户服务的UPF;
  7. SMF为PDU会话选择一个SSC模式,然后相应选择一个或多个UPF;
  8. SMF执行会话管理策略;
  9. 当用户上网行为触发PDU会话计费事件时,SMF为该PDU会话创建ChargingID,并向CHF发送Nchf_OfflineOnlyCharging_Create消息,以授权该用户启动PDU会话;
  10. CHF为该PDU会话开启CDR话单,并发送Nchf_OfflineOnlyCharging_Create响应消息给SMF,携带需要SMF触发用量上报的Trigger。
    至此一个完整的用户上网离线计费会话开启成功。

跟老猿学Python、学5G!

☞ ░ 前往老猿Python博文目录
Nim游戏不仅是博弈论中的经典案例,也是数和计算机科中研究策略和算法的重要工具。正确地运用异或运算,可以帮助玩家制定出确保先手必胜的策略。《博弈论经典:Nim游戏策略与异或原理剖析》是针对这一主题的深入剖析,它将为你揭示Nim游戏背后的数原理和策略制定过程。 参考资源链接:[博弈论经典:Nim游戏策略与异或原理剖析](https://wenku.csdn.net/doc/1nchf3ic6n?spm=1055.2569.3001.10343) 首先,我们需要了解Nim游戏的基本规则。在Nim游戏中,有n堆石子,每堆石子的数量可以不同。两名玩家轮流从中任选一堆,并从这堆中取走至少一颗石子,但不能同时从多堆中取石子。取走最后一颗石子的玩家获胜。 博弈论告诉我们,Nim游戏的胜负关键在于异或运算的应用。具体来说,当所有石子堆的数量进行异或运算后的结果为0时,表明当前状态是先手必败状态(N状态);而当异或运算的结果非0时,则当前状态为先手必胜状态(P状态)。这是因为异或运算具有的对称性质,使得先手总可以通过适当取石子的操作,将对手置于N状态。 为了制定最优策略,先手需要计算所有石子堆的数量的异或和。如果异或和非0,先手需要找到一种方式,通过一次操作将异或和变为0,这样做可以确保在接下来的游戏过程中,无论对手如何操作,先手总能通过适当调整,再次回到P状态。 具体策略如下: 1. 计算每堆石子数量的二进制表示,然后对这些二进制数进行异或运算。 2. 如果异或结果为0,则需要进行调整。可以任意选择一堆石子数量非0的堆,并从中取出若干颗石子,使得取出后,该堆石子数量的二进制表示与异或结果的二进制表示中,每一位都不同(即二进制表示为补码)。 3. 如果异或结果非0,说明当前就是P状态,先手无需操作,只需保持当前状态即可。 通过以上的策略和操作,可以确保先手在Nim游戏中始终处于有利地位,无论对手如何应对,先手总能通过异或运算来指导自己的行动,最终达到获胜的目的。 为了更好地掌握Nim游戏的策略,建议阅读《博弈论经典:Nim游戏策略与异或原理剖析》。这本书不仅提供了深入的理论分析,还包含大量的实战练习和案例研究,帮助你从理论到实践都能全面掌握Nim游戏的奥秘,提升你的博弈论水平。 参考资源链接:[博弈论经典:Nim游戏策略与异或原理剖析](https://wenku.csdn.net/doc/1nchf3ic6n?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LaoYuanPython

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值