人工智能数学基础--导数2:高阶导数及莱布尼茨(Leibniz)公式

在这里插入图片描述

一、定义

一般地,函数y=f(x)的导数y’=f’(x)仍然是x的函数。我们把y’=f’(x)的导数叫做函数y=f(x)的二阶导数,记作y’‘或
在这里插入图片描述

在这里插入图片描述
相应地,把y=f(x)的导数f’(x)叫做函数y=f(x)的一阶导数。类似地,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数······一般地,(n-1)阶导数的导数叫做n阶导数,分别记作:
y"’,y(4),…,y(n)

在这里插入图片描述

函数y=f(x)具有n阶导数,也常说成函数f(x)为n 阶可导。如果函数f(x)在点x处具有n阶导数,那么f(x)在点x的某一邻域内必定具有一切低于n阶的导数。二阶及二阶以上的导数统称高阶导数。

求高阶导数就是按前面学过的求导法则多次接连地求导数,若需要函数的高阶导数公式,则需要在逐次求导过程中,善于寻求某种对应的规律。

二、几个初等函数的高阶导数

1、指数函数y=ex的高阶导数

y=ex的高阶导数:y(n)=(ex)(n)=ex

2、正弦函数、余弦函数的高阶导数

y(n)=(sinx)(n)=sin(x+n×π/2)
y(n)=(cosx)(n)=cos(x+n×π/2)

3、对数ln(1+x)的高阶导数

y(n)=[ln(1+x)](n)=(-1)n-1(n-1)!/(1+x)(n)

4、幂函数y=xu的高阶导数

当n<=u时:

y(n)=(xu)(n)=u(u-1)…(u-n+1)xu-n

当u=n时,实际上上述公式的结果值为:n!,即:(xn)(n)=n!

当n>u时,(xu)(n)=0

三、高阶导数运算公式

1、加减法

(u ± v)(n)=u(n) ± v(n)

2、乘法

在这里插入图片描述
上述公式称为莱布尼茨(Leibniz)公式。例如:

(u v)"=u"v+2u’v’+uv"
(u v)"’=u"‘v+3u"v’+3u’v"+uv"’

四、小结:

本文介绍了高阶导数的定义、莱布尼茨(Leibniz)等高阶导数运算公式以及几个函数的高阶导数求导公式。

说明:

本文内容是老猿学习同济版高数的总结,有需要原教材电子版以及OpenCV、Python基础知识、、图像处理原理介绍相关电子资料,或对文章内有有疑问咨询的,请扫博客首页左边二维码加微信公号,根据加微信公号后的自动回复操作。

更多人工智能数学基础请参考专栏《人工智能数学基础》。

写博不易,敬请支持:

如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!

关于老猿的付费专栏

  1. 付费专栏《https://blog.csdn.net/laoyuanpython/category_9607725.html 使用PyQt开发图形界面Python应用》专门介绍基于Python的PyQt图形界面开发基础教程,对应文章目录为《 https://blog.csdn.net/LaoYuanPython/article/details/107580932 使用PyQt开发图形界面Python应用专栏目录》;
  2. 付费专栏《https://blog.csdn.net/laoyuanpython/category_10232926.html moviepy音视频开发专栏 )详细介绍moviepy音视频剪辑合成处理的类相关方法及使用相关方法进行相关剪辑合成场景的处理,对应文章目录为《https://blog.csdn.net/LaoYuanPython/article/details/107574583 moviepy音视频开发专栏文章目录》;
  3. 付费专栏《https://blog.csdn.net/laoyuanpython/category_10581071.html OpenCV-Python初学者疑难问题集》为《https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的伴生专栏,是笔者对OpenCV-Python图形图像处理学习中遇到的一些问题个人感悟的整合,相关资料基本上都是老猿反复研究的成果,有助于OpenCV-Python初学者比较深入地理解OpenCV,对应文章目录为《https://blog.csdn.net/LaoYuanPython/article/details/109713407 OpenCV-Python初学者疑难问题集专栏目录
  4. 付费专栏《https://blog.csdn.net/laoyuanpython/category_10762553.html Python爬虫入门 》站在一个互联网前端开发小白的角度介绍爬虫开发应知应会内容,包括爬虫入门的基础知识,以及爬取CSDN文章信息、博主信息、给文章点赞、评论等实战内容。

前两个专栏都适合有一定Python基础但无相关知识的小白读者学习,第三个专栏请大家结合《https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的学习使用。

对于缺乏Python基础的同仁,可以通过老猿的免费专栏《https://blog.csdn.net/laoyuanpython/category_9831699.html 专栏:Python基础教程目录)从零开始学习Python。

如果有兴趣也愿意支持老猿的读者,欢迎购买付费专栏。

老猿Python,跟老猿学Python!

☞ ░ 前往老猿Python博文目录 https://blog.csdn.net/LaoYuanPython
<think>好的,我现在需要处理用户关于莱布尼茨公式高阶导数的问题。首先,用户意图是数学求导相关,具体是莱布尼茨公式的应用。我需要确保回答准确、详细,并且符合用户设定的格式要求。 首先,我应该回忆一下莱布尼茨公式的基本内容。莱布尼茨公式是用于计算两个函数乘积的高阶导数,类似于二项式展开的形式。公式应该是这样的:(uv)^{(n)} = Σ_{k=0}^n C(n,k) u^{(k)} v^{(n−k)}。其中,C(n,k)是组合数,也就是n取k的组合数。 接下来,我需要确认用户是否需要具体的步骤或者示例。根据用户的问题,可能需要详细说明如何应用这个公式,以及注意事项。可能需要分点说明,比如公式描述、实施步骤、常见技巧、注意事项,再加上示例。 然后,我需要考虑是否需要搜索相关资料来补充或验证我的知识。比如,是否有特别的应用场景,或者常见的错误需要提醒用户。例如,当其中一个函数的高阶导数在某阶之后为零时,计算会简化,比如多项式函数。 现在,我需要按照用户的要求组织回答。用户要求将答案分成多个方法或步骤,每个步骤间换行,避免使用“首先”、“然后”之类的词汇。同时,要包含数学公式的正确格式,行内公式用$...$,独立公式用$$...$$。 可能的步骤结构如下: 1. 莱布尼茨公式描述:写出公式,解释各个部分。 2. 实施步骤:分点说明如何应用公式,比如确定函数、计算各阶导数、代入求和等。 3. 常见技巧:比如选择u和v的策略,简化计算的技巧。 4. 注意事项:比如乘积法则的扩展,注意导数的阶数。 5. 示例:举一个具体的例子,比如计算x&sup2;·sinx的三阶导数。 然后,我需要确保每个部分都正确,特别是公式的格式。例如,莱布尼茨公式应该用独立公式格式,组合数用行内公式。例如: $$(uv)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(k)} v^{(n-k)}$$ 在示例部分,我需要详细展示计算过程。例如,令u = x&sup2;,v = sinx,求三阶导数。因为u的二阶导数2,三阶及以上导数为零,所以求和只需要计算k=0,1,2的情况。这样计算会更简单。 同时,要注意用户提到的代码和公式格式。如果示例中有计算步骤,可能需要用代码块展示,比如Python中使用sympy库来计算高阶导数。例如: ```python from sympy import symbols, diff, sin x = symbols('x') f = x**2 * sin(x) third_derivative = diff(f, x, 3) print(third_derivative) ``` 这会输出结果,验证手动计算的正确性。 接下来是注意事项部分,需要提醒用户选择u和v的策略,通常将高阶导数容易计算的函数选为v,或者多项式函数作为u,因为其高阶导数会变为零,简化计算。 最后,生成相关问题部分,必须基于原题和回答内容。例如,用户可能对莱布尼茨公式的证明、与泰勒展开的关系,或者与其他高阶导数方法的比较感兴趣。所以相关问题可能包括: 1. 莱布尼茨公式的推导过程是怎样的? 2. 如何处理当两个函数的高阶导数都非零的情况? 3. 莱布尼茨公式在解决微分方程中的应用有哪些? 现在需要检查所有要求是否满足:避免第一人称,步骤间换行,正确引用格式,相关问题正确放置。特别是确保没有在末尾集中引用,而是将引用融入各个部分。例如,在公式和示例中正确使用符号,代码块正确标注语言类型。 最后,整合所有内容,确保清晰详细,符合用户的操作需求,并且每个部分结构正确。</think>莱布尼茨公式是计算两个函数乘积的$n$阶导数的核心工具,其形式为: $$(uv)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(k)} v^{(n-k)}$$ 其中$\binom{n}{k}$为组合数,$u^{(k)}$和$v^{(n-k)}$分别表示函数$u$和$v$的$k$阶和$(n-k)$阶导数--- **公式应用步骤** 1. **确定函数$u$和$v$** 选择乘积函数中的一部分作为$u(x)$,另一部分作为$v(x)$。通常将易求高阶导数的函数选为$v(x)$(如三角函数、指数函数),多项式函数选为$u(x)$(因其高阶导数可能快速归零)。 2. **计算各阶导数** 分别求出$u(x)$的$0$到$n$阶导数和$v(x)$的$0$到$n$阶导数。若$u(x)$或$v(x)$的某阶导数为零,可提前终止对应部分的计算。 3. **代入公式求和** 将导数结果代入莱布尼茨公式,按$k=0$到$k=n$逐项计算并求和。 --- **简化计算的技巧** - **多项式函数的优势**:若$u(x)$为$m$次多项式,当$k > m$时$u^{(k)}(x) = 0$,此时求和上限可降为$m$。 - **对称性利用**:观察$u^{(k)}$和$v^{(n-k)}$的对称性,减少重复计算。 - **符号交替规律**:若$v(x)$包含$\sin x$或$\cos x$,其导数存在周期性符号变化,可直接套用规律。 --- **示例:计算$f(x) = x^2 \sin x$的三阶导数** 设$u = x^2$,$v = \sin x$,则: - $u^{(0)} = x^2$,$u^{(1)} = 2x$,$u^{(2)} = 2$,$u^{(k)} = 0$($k \geq 3$) - $v^{(0)} = \sin x$,$v^{(1)} = \cos x$,$v^{(2)} = -\sin x$,$v^{(3)} = -\cos x$ 仅需计算$k=0,1,2$项: $$f'''(x) = \binom{3}{0}x^2(-\cos x) + \binom{3}{1}(2x)(-\sin x) + \binom{3}{2}(2)(\cos x)$$ 化简后: $$f'''(x) = -x^2 \cos x -6x \sin x +6 \cos x$$ **代码验证**: ```python from sympy import symbols, diff, sin x = symbols('x') f = x**2 * sin(x) third_derivative = diff(f, x, 3) print(third_derivative) # 输出:-x**2*cos(x) - 6*x*sin(x) + 6*cos(x) ``` --- **注意事项** - **组合数的计算**:$\binom{n}{k} = \frac{n!}{k!(n-k)!}$,需注意数值快速增长。 - **导数的连续性**:公式假设$u$和$v$在计算区间内具有$n$阶连续导数- **符号错误预防**:特别注意$v^{(n-k)}$的符号变化(如$\sin x$的奇次导数为$\cos x$并伴随符号交替)。
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LaoYuanPython

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值