【论文复现】一种结合武装力量方案和战略调整的改进鲸鱼优化算法


在这里插入图片描述

1.摘要

本文提出了一种改进鲸鱼优化算法(WAROA),专门设计用于解决复杂、大规模和有约束的优化问题。此算法的核心创新在于对原始鲸鱼优化算法进行了改进,通过两个主要方面的调整提升了其效率和适用性:首先,通过战略性调整关键参数和建立原始优化算法的基本原则;其次,引入了一个武装力量方案,该方案通过对搜索鲸鱼进行分类,促进了不同类别间的高效合作。

2.鲸鱼优化算法WOA原理

SCI二区|鲸鱼优化算法(WOA)原理及实现

3.改进策略

WAROA算法创建了一个名为深层猎物组的新搜索组,专注于提升算法的局部开发能力。WOAROA算法设立了一个存档系统,用于记录搜索过程中发现的优秀个体,并将这些数据用于两个搜索组的位置更新。

包围机制采用原论文方式,改进螺旋更新位置:
X k ( t + 1 ) = w ⋅ X ∗ ( t ) + D ′ e b l ′ cos ⁡ ( 2 π l ′ ) , p ≥ 0.5 D ′ = X ∗ ( t ) − X k ( t ) , k = 1 , 2 , . . . , N P w = w 1 − ( w 1 − w 2 ) × ( t / T max ⁡ ) 1 / t l ′ = 2 i / N P ( i = 1 , 2 , . . . , N P ) \begin{aligned} & \mathbf{X}_{k}(t+1)=w\cdot\mathbf{X}^{*}(t)+\mathbf{D}^{\prime}e^{bl^{\prime}}\cos(2\pi l^{\prime}),p\geq0.5 \\ & D^{\prime}=X^{*}(t)-X_{k}(t),k=1,2,...,NP \\ & w=w_{1}-(w_{1}-w_{2})\times(t/T_{\max})^{1/t} \\ & l^{\prime}=2i/NP(i=1,2,...,NP) \end{aligned} Xk(t+1)=wX(t)+Deblcos(2πl),p0.5D=X(t)Xk(t),k=1,2,...,NPw=w1(w1w2)×(t/Tmax)1/tl=2i/NP(i=1,2,...,NP)

改进猎物搜索:
X k ( t + 1 ) = X a r c h i v e ( t ) ′ − A ⋅ D a r c h i v e ′ , ∣ A ∣ ≥ 1 a n d p < 0.5 D a r c h i v e ′ = C ⋅ X a r c h i v e ( t ) ′ − X k ( t ) , k = 1 , 2 , . . . , N P \begin{aligned} & \boldsymbol{X}_k(t+1)=\boldsymbol{X}_{archive}(t)^{\prime}-\boldsymbol{A}\cdot\boldsymbol{D}_{archive}^{\prime},|A|\geq1\mathrm{and}p<0.5 \\ & \boldsymbol{D}_{archive}^{\prime}=\boldsymbol{C}\cdot\boldsymbol{X}_{archive}(t)^{\prime}-\boldsymbol{X}_k(t),k=1,2,...,NP \end{aligned} Xk(t+1)=Xarchive(t)ADarchive,A1andp<0.5Darchive=CXarchive(t)Xk(t),k=1,2,...,NP

其中, X a r c h i v e ( t ) \boldsymbol{X}_{archive}(t) Xarchive(t)是从存档中最优秀的个体中选择,这里使用历史最优个体代替了原来WOA方法中的随机个体,目的是使探索搜索过程更有目的性和效率。
在这里插入图片描述

深层猎物群位置更新方法,当代中最优秀个体被选为司令鲸:
X c o m m a n d e r ( t ) = X ∗ ( t ) \mathbf{X}_{commander}(t)=\mathbf{X}^{*}(t) Xcommander(t)=X(t)
指挥官鲸附近生成数条深水捕食鲸以加速局部搜索:
X p ( t ) = X c o m ( t ) + k ( m − 0.5 ) ( X c o m ( t ) − X a r c h i v e ( t ) ) \mathbf{X}_{p}(t)=\mathbf{X}_{com}(t)+k(m-0.5)(\mathbf{X}_{\mathrm{com}}(t)-\mathbf{X}_{archive}(t)) Xp(t)=Xcom(t)+k(m0.5)(Xcom(t)Xarchive(t))

为了确保新提出的深层猎物组的有效运作,论文采用了一个特定的调整原则来管理群体规模。根据传统组 X traditional = { x 1 , x 2 , … , x N P } X_\text{traditional}=\{x_1,x_2,\ldots,x_{NP}\} Xtraditional={x1,x2,,xNP}和深层猎物组 X d e e p = { x 1 , x 2 , … , x N F } X_\mathrm{deep}=\{x_1,x_2,\ldots,x_{NF}\} Xdeep={x1,x2,,xNF}成员的适应度值,两组的人口规模将以单位 N 0 N_0 N0进行适当的增减,同时确保总人口数量保持不变。

在这里插入图片描述

流程图

在这里插入图片描述

伪代码

在这里插入图片描述

4.结果展示

CEC2019

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.参考文献

[1] Jiang R, Yang M, Wang S, et al. An improved whale optimization algorithm with armed force program and strategic adjustment[J]. Applied Mathematical Modelling, 2020, 81: 603-623.

6.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值