1.摘要
本文提出了一种改进鲸鱼优化算法(WAROA),专门设计用于解决复杂、大规模和有约束的优化问题。此算法的核心创新在于对原始鲸鱼优化算法进行了改进,通过两个主要方面的调整提升了其效率和适用性:首先,通过战略性调整关键参数和建立原始优化算法的基本原则;其次,引入了一个武装力量方案,该方案通过对搜索鲸鱼进行分类,促进了不同类别间的高效合作。
2.鲸鱼优化算法WOA原理
3.改进策略
WAROA算法创建了一个名为深层猎物组的新搜索组,专注于提升算法的局部开发能力。WOAROA算法设立了一个存档系统,用于记录搜索过程中发现的优秀个体,并将这些数据用于两个搜索组的位置更新。
包围机制采用原论文方式,改进螺旋更新位置:
X
k
(
t
+
1
)
=
w
⋅
X
∗
(
t
)
+
D
′
e
b
l
′
cos
(
2
π
l
′
)
,
p
≥
0.5
D
′
=
X
∗
(
t
)
−
X
k
(
t
)
,
k
=
1
,
2
,
.
.
.
,
N
P
w
=
w
1
−
(
w
1
−
w
2
)
×
(
t
/
T
max
)
1
/
t
l
′
=
2
i
/
N
P
(
i
=
1
,
2
,
.
.
.
,
N
P
)
\begin{aligned} & \mathbf{X}_{k}(t+1)=w\cdot\mathbf{X}^{*}(t)+\mathbf{D}^{\prime}e^{bl^{\prime}}\cos(2\pi l^{\prime}),p\geq0.5 \\ & D^{\prime}=X^{*}(t)-X_{k}(t),k=1,2,...,NP \\ & w=w_{1}-(w_{1}-w_{2})\times(t/T_{\max})^{1/t} \\ & l^{\prime}=2i/NP(i=1,2,...,NP) \end{aligned}
Xk(t+1)=w⋅X∗(t)+D′ebl′cos(2πl′),p≥0.5D′=X∗(t)−Xk(t),k=1,2,...,NPw=w1−(w1−w2)×(t/Tmax)1/tl′=2i/NP(i=1,2,...,NP)
改进猎物搜索:
X
k
(
t
+
1
)
=
X
a
r
c
h
i
v
e
(
t
)
′
−
A
⋅
D
a
r
c
h
i
v
e
′
,
∣
A
∣
≥
1
a
n
d
p
<
0.5
D
a
r
c
h
i
v
e
′
=
C
⋅
X
a
r
c
h
i
v
e
(
t
)
′
−
X
k
(
t
)
,
k
=
1
,
2
,
.
.
.
,
N
P
\begin{aligned} & \boldsymbol{X}_k(t+1)=\boldsymbol{X}_{archive}(t)^{\prime}-\boldsymbol{A}\cdot\boldsymbol{D}_{archive}^{\prime},|A|\geq1\mathrm{and}p<0.5 \\ & \boldsymbol{D}_{archive}^{\prime}=\boldsymbol{C}\cdot\boldsymbol{X}_{archive}(t)^{\prime}-\boldsymbol{X}_k(t),k=1,2,...,NP \end{aligned}
Xk(t+1)=Xarchive(t)′−A⋅Darchive′,∣A∣≥1andp<0.5Darchive′=C⋅Xarchive(t)′−Xk(t),k=1,2,...,NP
其中,
X
a
r
c
h
i
v
e
(
t
)
\boldsymbol{X}_{archive}(t)
Xarchive(t)是从存档中最优秀的个体中选择,这里使用历史最优个体代替了原来WOA方法中的随机个体,目的是使探索搜索过程更有目的性和效率。
深层猎物群位置更新方法,当代中最优秀个体被选为司令鲸:
X
c
o
m
m
a
n
d
e
r
(
t
)
=
X
∗
(
t
)
\mathbf{X}_{commander}(t)=\mathbf{X}^{*}(t)
Xcommander(t)=X∗(t)
指挥官鲸附近生成数条深水捕食鲸以加速局部搜索:
X
p
(
t
)
=
X
c
o
m
(
t
)
+
k
(
m
−
0.5
)
(
X
c
o
m
(
t
)
−
X
a
r
c
h
i
v
e
(
t
)
)
\mathbf{X}_{p}(t)=\mathbf{X}_{com}(t)+k(m-0.5)(\mathbf{X}_{\mathrm{com}}(t)-\mathbf{X}_{archive}(t))
Xp(t)=Xcom(t)+k(m−0.5)(Xcom(t)−Xarchive(t))
为了确保新提出的深层猎物组的有效运作,论文采用了一个特定的调整原则来管理群体规模。根据传统组 X traditional = { x 1 , x 2 , … , x N P } X_\text{traditional}=\{x_1,x_2,\ldots,x_{NP}\} Xtraditional={x1,x2,…,xNP}和深层猎物组 X d e e p = { x 1 , x 2 , … , x N F } X_\mathrm{deep}=\{x_1,x_2,\ldots,x_{NF}\} Xdeep={x1,x2,…,xNF}成员的适应度值,两组的人口规模将以单位 N 0 N_0 N0进行适当的增减,同时确保总人口数量保持不变。
流程图
伪代码
4.结果展示
CEC2019
5.参考文献
[1] Jiang R, Yang M, Wang S, et al. An improved whale optimization algorithm with armed force program and strategic adjustment[J]. Applied Mathematical Modelling, 2020, 81: 603-623.