全覆盖路径规划
文章平均质量分 86
小O的算法实验室
代码获取公众号:小O的算法实验室
分享算法与应用
展开
-
【智能算法应用】基于A*求解多机器人全覆盖路径规划问题
检查当前节点是否为目标节点,如果是,则算法结束并通过逆向追踪重建路径。如果不是,将当前节点移至封闭列表,并检查其所有邻居,对每个邻居更新或计算其代价,将未在开放或封闭列表中的邻居添加到开放列表。多机器人全覆盖路径规划问题涉及一组机器人系统,这些机器人需要协同工作以覆盖一个给定区域的所有可访问点,每个点至少被访问一次。首先需要将机器人的操作环境进行网格化处理,这里采用栅格地图。A*算法是一种基于图搜索的智能启发式算法,它具有高稳定性和高节点搜索效率。主要原理为:以起点作为初始节点,将其加入开放列表。原创 2024-11-09 10:54:02 · 944 阅读 · 0 评论 -
【智能算法应用】基于融合Q-learning-鲸鱼优化算法求解巡检机器人未知区域多点路径规划问题
Q-learning 算法使用 Q 值来表示在某个状态下采取某个动作所能获得的长期回报,通过不断地更新 Q 值,找到最优的Q 值和策略。巡检机器人需要对未知区域进行探索,这里采用A*进行全覆盖搜索,巡检机器人会标记待处理任务点区域,随后通过融合Q-learning-鲸鱼优化算法进行规划,从而对任务点进行故障维修处理。2.将已知状态下的 Q 值记录在 Q-table 中,Q-table 中查询当前状态 s 对应。其中,Q(s,a)是在状态 s 下采取动作 a 的 Q 值;为学习率,控制新旧经验之间的权重。原创 2024-10-09 20:06:43 · 1122 阅读 · 0 评论