【第4期-智能驾驶汽车系列术语概念解析】第1节:基于车道线方程的曲率计算

目录

前言

一、利用三次多项式曲线对车道线建模

二、三次多项式系数的物理释义

三、MATLAB代码



前言

        车道线检测和识别是自动驾驶汽车前端环境感知的组成部分,检测结果为后端的规划和决策板块提供重要的信息参考,LDW(车道偏离预警)、LKA(车道保持辅助)、ACC(自适应巡航控制)等功能模块都依赖于连续稳定的车道线检测。
        如下图1(来源于网络,侵删)所示,智能汽车首先利用摄像头采集到视觉图像,然后通过二值化等数学处理,最后可以提取结构化道路下的清晰车道线。

图1 基于视觉图像的车道线提取

        车道线检测结果在向后端规控板块进行数据流传递的过程中,若直接将检测到的车道线用若干密集散点进行输出,一方面会增加系统的运算成本,另一方面也会导致检测结果失真。
        因此,可以通过建立车道线函数模型,该模型的待定系数根据本周期的检测结果散点进行函数拟合得到。如此一来,车道线检测结果只需向后端传递较少的几个函数模型的参数,后端接收到参数再通过函数模型还原为车道线。
        三次多项式曲线拟合车道中心线线不仅拟合精度较高,拟合结果的几个待定系数也具有一定的物理属性。

一、利用三次多项式曲线对车道线建模

        关于车道线函数模型,首先需要基于本车建立车体坐标系,坐标系原点设为车辆质心。如下图2所示为利用MATLAB的自动驾驶工具箱函数生成的一条模拟路段,蓝车为主车,其余车辆为交通车。

图2 同向三车道弯道场景

        左右侧车道线的数学模型可以利用三次多项式进行描述(MATLAB的自动驾驶工具箱库函数提供了三次方车道边界模型函数,cubicLaneBoudary),如下式所示:

fcsd

 式中,ai和bi 分别表示左侧车道线和右侧车道线的待定系数。

        为了求解式上式的待定系数,可以基于蓝车所在的中间车道的双侧车道线离散点,利用MATLAB的poliyfit函数进行多项式拟合,拟合结果如下所示:

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小黎的Ally

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值