✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
工业自动化领域中,仿真技术提供了一种高效安全的方案,用于在将软件部署到实际系统之前对其进行预测试。CIROS是一个强大的仿真平台,用于创建和应用自动化技术的3D模型。其丰富的教学机制和材料使其在学习环境中具有多种用途。CIROS为常见的制造设备提供了多种渲染模型,例如Festo® 模块化生产系统 (MPS) 和 Kinova® Gen3 机器人(图1)。
然而,CIROS并未为其仿真组件提供固有的物理模型,因此无法准确地表征工业过程的物理特性。值得注意的是,具有精确物理特性的高保真仿真环境对于将AI模型迁移到实际硬件至关重要。本项目旨在通过为CIROS中的渲染模型添加工业组件的物理模型来构建一个用于智能工业制造的仿真环境(图2)。通过将机器人的动态模型集成到制造数字化孪生软件中,该平台通过将机器人动力学的影响纳入工业任务的控制逻辑中,实现了高仿真保真度。此外,仿真系统可以通过开放协议与真实机器人交换数据,这使得能够同时测试真实和仿真系统(图3)。该平台可用于开发AI算法,确保轻松访问丰富的工业设备库,并实现这些算法的平滑过渡。
关键词:工业自动化,仿真,CIROS,物理模型,数字化孪生,AI
引言
随着工业4.0的浪潮席卷全球,智能制造技术的应用日益广泛。自动化技术作为智能制造的核心要素,其可靠性至关重要。传统的测试方法往往耗时费力且存在安全风险。因此,利用仿真技术来对工业自动化系统进行预测试,成为了一种趋势。
CIROS作为一款功能强大的仿真平台,为用户提供了丰富的模型库和可视化工具,可以有效地模拟工业自动化场景。然而,CIROS的仿真模型目前缺乏物理模型的支持,无法准确地反映真实世界中的物理特性。这限制了其在智能制造领域应用的深度和广度。
本项目的研究目标
本项目旨在通过扩展CIROS平台的仿真模型,构建一个能够精确表征工业组件物理特性的仿真环境。具体目标如下:
-
为CIROS的渲染模型添加工业组件的物理模型,例如机器人、传感器、执行器等。
-
将机器人的动态模型集成到制造数字化孪生软件中,实现高保真度仿真。
-
构建开放的通信协议,实现仿真系统与真实机器人之间的数据交互,以便进行同步测试。
-
为用户提供丰富的工业设备库,方便用户进行AI算法开发和测试。
项目实施方案
本项目将采用以下技术和方法来实现研究目标:
-
物理模型构建: 利用多体动力学理论和数值仿真技术,建立工业组件的物理模型,包括运动学、动力学、传感器模型等。
-
数字化孪生技术: 将构建的物理模型集成到制造数字化孪生软件中,实现仿真环境与真实环境的一致性。
-
通信协议设计: 采用开放的通信协议,例如OPC UA等,实现仿真系统与真实机器人之间的实时数据交互。
-
用户界面设计: 提供友好的用户界面,方便用户进行模型配置、仿真实验和结果分析。
预期成果
本项目预计取得以下成果:
-
构建一个能够精确表征工业组件物理特性的仿真环境。
-
实现高保真度仿真,为AI算法开发和测试提供可靠的平台。
-
促进仿真技术在智能制造领域的应用,提高自动化系统的可靠性和安全性。
结论
本项目通过扩展CIROS平台的仿真模型,为智能制造领域提供了一个高保真度、可扩展的仿真环境。该平台将为AI算法开发和测试提供可靠的技术支持,促进工业自动化技术的进步和应用。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类