【ARIMA-SSA-LSTM】合差分自回归移动平均方法-麻雀优化-长短期记忆神经网络研究附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

时间序列预测在诸多领域都扮演着至关重要的角色,例如金融市场的趋势分析、能源消耗的预测、以及环境污染的监控等。传统的预测方法,如自回归移动平均(ARIMA)模型,虽然在处理线性时间序列数据方面表现良好,但在面对非线性、非平稳的时间序列时,其性能往往受到限制。近年来,深度学习方法的兴起,特别是长短期记忆神经网络(LSTM),凭借其强大的非线性建模能力,在复杂时间序列预测领域取得了显著进展。然而,单一的LSTM模型在处理具有多重特征和复杂模式的时间序列时,也存在一些不足,例如容易陷入局部最优解,对初始参数敏感等。

本文旨在探讨一种融合ARIMA、奇异谱分析(SSA)、LSTM模型并结合麻雀搜索算法(SSA)进行优化的预测方法,即ARIMA-SSA-LSTM模型结合麻雀优化算法。该模型的核心思想是充分利用不同模型的优势,首先通过ARIMA模型对时间序列数据进行线性建模,提取其中的线性成分;然后,利用奇异谱分析方法对残差序列进行分解,提取隐藏在其中的非线性成分;接着,将分解后的成分输入LSTM网络进行非线性建模和预测;最后,采用麻雀搜索算法对LSTM网络的超参数进行优化,以提高模型的预测精度和泛化能力。

一、模型框架

  1. ARIMA模型: ARIMA模型是一种经典的时间序列分析方法,它通过对时间序列的自相关性和偏自相关性进行分析,来建立一个包含自回归(AR)、差分(I)和移动平均(MA)成分的模型。ARIMA模型可以有效地捕捉时间序列中的线性趋势和季节性模式,为后续的非线性建模提供基础。

  2. 奇异谱分析 (SSA): SSA是一种非参数的时间序列分解方法,它通过将原始时间序列嵌入到高维空间,然后进行奇异值分解,将时间序列分解成多个彼此独立的成分,包括趋势成分、周期成分和噪声成分。SSA能够有效地提取隐藏在时间序列中的非线性成分,并将其与噪声分离,为LSTM模型的输入提供更干净、更具代表性的特征。

  3. 长短期记忆神经网络 (LSTM): LSTM是一种特殊的循环神经网络(RNN),它通过引入记忆单元和门控机制,能够有效地处理长期依赖关系,克服了传统RNN在处理长序列时容易出现的梯度消失或梯度爆炸问题。LSTM网络可以有效地学习时间序列中的非线性模式,并进行高精度的预测。

  4. 麻雀搜索算法 (SSA): 麻雀搜索算法是一种新型的群体智能优化算法,它模拟了麻雀觅食过程中的行为,包括发现者、追随者和侦察者三种角色。该算法具有收敛速度快、全局搜索能力强等优点,可以有效地对LSTM网络的超参数进行优化,提高模型的性能。

二、模型构建步骤

  1. 数据预处理: 对原始时间序列数据进行清洗和标准化处理,例如去除异常值、填充缺失值、以及进行归一化或标准化处理,以提高模型的收敛速度和预测精度。

  2. ARIMA模型建立: 对预处理后的时间序列数据进行平稳性检验,若不平稳,则进行差分处理,直到平稳为止。然后,根据自相关函数(ACF)和偏自相关函数(PACF)确定ARIMA模型的参数p、d、q,并对模型进行参数估计和诊断检验。

  3. SSA分解: 将ARIMA模型的残差序列作为SSA的输入,选择合适的窗口长度,进行奇异值分解,提取不同的成分。选择具有较高信息量的成分作为LSTM模型的输入。

  4. LSTM模型建立: 构建LSTM网络,包括输入层、LSTM层和输出层。根据输入数据的维度和预测任务的需求,选择合适的LSTM层数和神经元个数。

  5. 麻雀优化算法 (SSA) 参数优化: 利用麻雀搜索算法对LSTM网络的超参数进行优化,例如学习率、批次大小、dropout率等。设置麻雀种群的大小、迭代次数和搜索范围,根据预定义的适应度函数(例如均方误差MSE或均方根误差RMSE),搜索最优的超参数组合。

  6. 模型训练和预测: 使用优化后的超参数训练LSTM网络,并将SSA分解后的成分作为输入,输出预测结果。

  7. 模型评估: 使用合适的评价指标,例如均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE),对模型的预测结果进行评估,并与其他预测模型进行比较。

三、麻雀搜索算法 (SSA) 优化策略

在ARIMA-SSA-LSTM模型中,麻雀搜索算法的关键作用是优化LSTM网络的超参数。具体的优化策略包括:

  1. 编码: 将LSTM网络的超参数编码成麻雀的位置向量,例如学习率、批次大小、dropout率等。

  2. 适应度函数: 选择合适的适应度函数,例如均方误差MSE或均方根误差RMSE,来评估每个麻雀位置向量对应的LSTM模型的性能。

  3. 麻雀种群初始化: 随机生成一定数量的麻雀个体,并初始化它们的位置向量。

  4. 迭代更新: 根据麻雀搜索算法的规则,更新麻雀的位置向量。包括:

    • 发现者: 在搜索空间中进行广泛搜索,寻找潜在的食物来源。

    • 追随者: 跟随发现者,利用发现者发现的食物信息。

    • 侦察者: 监测环境中的威胁,并在必要时发出警报。

  5. 终止条件: 设置迭代次数或适应度函数的阈值作为终止条件。当满足终止条件时,算法停止搜索,并返回最优的麻雀位置向量,即最优的LSTM网络超参数。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值