✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本论文聚焦抽水蓄能电站系统的最优竞价策略,综合考虑电力市场环境、电站运行特性及成本等多因素,构建以利润最大化为目标的竞价策略模型。运用智能优化算法对模型求解,通过案例分析验证模型有效性。研究结果表明,所提策略能显著提升抽水蓄能电站在电力市场中的经济效益,为电站运营决策提供科学依据,对促进抽水蓄能电站参与电力市场竞争、优化电力资源配置具有重要意义。
关键词
抽水蓄能电站;最优竞价策略;电力市场;利润最大化;智能优化算法
一、引言
1.1 研究背景
随着全球能源结构向清洁化、低碳化转型,可再生能源发电占比不断提高 。然而,风能、太阳能等可再生能源具有间歇性和波动性,给电力系统的稳定运行带来挑战 。抽水蓄能电站作为一种成熟的大规模储能技术,能够实现电能与机械能的相互转换,具备调峰、填谷、调频、调相和备用等多种功能,在保障电力系统安全稳定运行、促进可再生能源消纳方面发挥着关键作用 。
与此同时,电力市场化改革不断推进,抽水蓄能电站逐步参与电力市场交易 。在电力市场环境下,抽水蓄能电站需要根据市场价格信号、自身运行约束等因素,制定合理的竞价策略,以实现经济效益最大化 。因此,研究抽水蓄能电站系统的最优竞价策略具有重要的现实意义。
1.2 研究现状
目前,国内外学者针对抽水蓄能电站的竞价策略开展了一系列研究 。部分研究基于传统的优化方法,如线性规划、动态规划等,构建竞价模型,但这些方法在处理复杂非线性问题时存在局限性 。随着智能优化算法的发展,遗传算法、粒子群优化算法等被应用于抽水蓄能电站竞价策略研究,有效提高了模型的求解效率和质量 。此外,还有研究考虑了电力市场的不确定性因素,如电价波动、负荷预测误差等,通过引入概率模型、鲁棒优化等方法,增强竞价策略的适应性 。然而,现有研究在综合考虑抽水蓄能电站多种运行特性、电力市场多种交易品种以及不确定性因素的协同影响方面仍有待深入。
1.3 研究目的与意义
本研究旨在构建考虑多种因素的抽水蓄能电站系统最优竞价策略模型,提出有效的求解算法,为抽水蓄能电站在电力市场中的运营决策提供科学依据 。研究成果有助于提高抽水蓄能电站的经济效益,增强其市场竞争力,促进抽水蓄能电站的可持续发展;同时,合理的竞价策略能够优化电力资源配置,提高电力系统运行效率,推动电力市场的健康发展。
二、抽水蓄能电站系统与电力市场概述
2.1 抽水蓄能电站系统运行特性
抽水蓄能电站由上水库、下水库、水泵水轮机、发电电动机等主要设备组成,其运行过程包括抽水工况和发电工况 。在电力负荷低谷时段,电站处于抽水工况,消耗电能将下水库的水抽至上水库,实现电能的储存;在电力负荷高峰时段,电站切换至发电工况,上水库的水通过水泵水轮机发电,将储存的机械能转化为电能并送入电网 。抽水蓄能电站具有响应速度快、调节能力强等特点,但在运行过程中存在能量转换效率限制、水库库容约束、启停时间约束等 。
2.2 电力市场交易机制
电力市场交易品种丰富多样,主要包括日前市场、实时市场、辅助服务市场等 。日前市场中,市场参与者提前申报次日各时段的发电计划和报价,通过市场出清确定发电计划和电价 ;实时市场根据实际运行情况,对发电计划进行实时调整,以平衡电力供需 ;辅助服务市场则为保障电力系统安全稳定运行提供调频、调压、备用等服务,市场参与者通过提供辅助服务获取相应收益 。不同交易市场的价格形成机制和运行规则存在差异,抽水蓄能电站需要根据自身特点和市场情况,合理参与各市场交易 。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] 高慧敏.核电站与抽水蓄能电站的数学建模及联合运行研究[D].浙江大学,2006.
[2] 康玲,叶鲁卿.基于MATLAB的抽水蓄能机组控制系统的仿真研究[J].大电机技术, 1999(1):5.DOI:10.1088/0256-307X/16/12/013.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇