R 语言PPI网络

本文介绍如何使用R语言的igraph包在内部绘制PPI网络,尤其适用于基因数量较少的情况。通过处理从STRING网站下载的数据,可以避免使用Cytoscape时的手动操作。当基因数量过多导致重叠时,可能需要导出到Cytoscape进行调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一般来说网络图都是R语言导出数据放入cytoscape里面绘制,今天想试试在R语言内部去画,确实有相应的R包(igraph)可以做,不是专门针对PPI网络来的,自己组织一下数据可以画。

尤其是基因数量比较少的情况下,还是很好用的,省掉手动点鼠标的重复操作。要是基因数量多了,可能会有基因重叠,得把图导出去修改,就不如cytoscape里直接拖动方便了。

1.输入数据

string_interactions.tsv是从string网页下载的PPI网络输出结果文件。图上基因的颜色是按照上下调来分配的,在这个例子里基因上下调信息是编的,实际应用时可以从差异分析结果中得到。

2.样图

3.代码如下

library(igraph)
links= read.delim("string_interactions.tsv")
network <- graph_from_data_frame(d=links[,c(1:2,13)], directed=F) 
deg <- degree(network, mode="all")

nodes <- data.frame(
    name
在R语言中,可以使用WGCNA包来构建基因共表达网络,并计算基因的FC值。具体步骤如下: 1. 安装WGCNA包 ```R install.packages("WGCNA") ``` 2. 导入表达矩阵数据 ```R library(WGCNA) # 假设exp_matrix为基因表达矩阵,行为基因,列为样本 datExpr <- as.data.frame(exp_matrix) ``` 3. 计算基因共表达模块 ```R # 计算基因共表达网络,corType可选pearson、spearman等 powers <- c(c(1:10), seq(from=12,to=20,by=2)) sft <- pickSoftThreshold(datExpr, powerVector=powers, verbose=5) # 根据选定的power值构建基因共表达模块 net <- blockwiseModules(datExpr, power=sft$powerEstimate, TOMType="unsigned", mergeCutHeight=0.25, minModuleSize=30, reassignThreshold=0, networkType="signed", corType="pearson", maxBlockSize=20000, verbose=3) ``` 4. 计算模块内基因的平均表达量 ```R # 计算每个模块的平均表达量 moduleColors <- net$colors MEs <- moduleEigengenes(datExpr, moduleColors)$eigengenes ``` 5. 计算基因的FC值 ```R # 假设group为样本分组信息 group <- factor(c(rep("group1", ncol(exp_matrix1)), rep("group2", ncol(exp_matrix2)))) # 计算每个基因的FC值 FC <- log2(apply(exp_matrix2, 1, mean) / apply(exp_matrix1, 1, mean)) # 将FC值和模块内基因的平均表达量整合到一个数据框中 geneInfo <- data.frame(FC, MEs[, moduleColors]) ``` 6. 可以根据需要对基因和模块进行进一步分析,例如基因和模块的相关性分析等。 需要注意的是,FC的计算方式可能会因数据类型、数据预处理等因素而有所不同,因此需要根据具体情况进行调整。同时,基因共表达网络的构建也需要根据数据特点进行优化。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值