3D重构基础四--Planar Homography & Epipolar Geometry

本文介绍了3D重构中的Planar Homography(共面点成像)和Epipolar Geometry(对极几何)概念。Homography矩阵用于图像校正、图像对齐等,而对极几何则描述了两幅图像之间的对应关系,特别是在立体视觉中的应用,如减少透视失真、图像拼接等。文章还探讨了如何计算和利用对极约束来寻找图像间的对应点。
摘要由CSDN通过智能技术生成

上一篇,只要主要搞清楚透视的坐标变换。

这一篇,要搞清楚两个概念,Planar Homography (共面点成像)& Epipolar Geometry(对极几何)

Now,Start!

先补充Homography的概念,简单来说Homography(单应性),说的是投影的时候可以逆过来找,比如,一个物体可以通过旋转相机镜头获取两张不同的照片(这两张照片的内容不一定要完全对应,部分对应即可),我们可以把单应性设为一个二维矩阵M,那么照片1乘以M就是照片2. 这有着很多实际应用,比如图像校正图像对齐或两幅图像之间的相机运动计算(旋转和平移)等。一旦旋转和平移从所估计的单应性矩阵中提取出来,那么该信息将可被用来导航或是把3D物体模型插入到图像或视频中,使其可根据正确的透视来渲染,并且成为原始场景的一部分(请见增强现实)。

具体的解释可以戳wiki

一、共面点成像

思路:同一物理点,不同成像面之间的关系。

在前面已经讨论了三维物体成像过程,相比之下,还有一种稍简单的情况——平面成像,即所有的物点都处在同一个平面上,我们有理由相信,这种情况下的成像关系是一般立体成像的一种特例。

image

先回顾一下一般的单体成像过程

image

image

image image

image

对于共面的物点,在恰当的世界坐标系中,可以令其中一个坐标值为0,不妨设第三维坐标为0,图示如下:

image

由于物点的第三维坐标为0,整个成像过程的矩阵表示会得到简化。

image

可以简化为一个3X3的矩阵,称之为Homography矩阵,该矩阵是可逆的!!

image

对于正前方的物体平面(垂直于光轴),成像关系将更进一步简化。

image

image

将共面物点经成像之后,再变换为数字图像(u,v)

image

研究共面点成像有什么意义呢?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值