3D重构基础四--Planar Homography & Epipolar Geometry

本文介绍了3D重构中的Planar Homography(共面点成像)和Epipolar Geometry(对极几何)概念。Homography矩阵用于图像校正、图像对齐等,而对极几何则描述了两幅图像之间的对应关系,特别是在立体视觉中的应用,如减少透视失真、图像拼接等。文章还探讨了如何计算和利用对极约束来寻找图像间的对应点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一篇,只要主要搞清楚透视的坐标变换。

这一篇,要搞清楚两个概念,Planar Homography (共面点成像)& Epipolar Geometry(对极几何)

Now,Start!

先补充Homography的概念,简单来说Homography(单应性),说的是投影的时候可以逆过来找,比如,一个物体可以通过旋转相机镜头获取两张不同的照片(这两张照片的内容不一定要完全对应,部分对应即可),我们可以把单应性设为一个二维矩阵M,那么照片1乘以M就是照片2. 这有着很多实际应用,比如图像校正图像对齐或两幅图像之间的相机运动计算(旋转和平移)等。一旦旋转和平移从所估计的单应性矩阵中提取出来,那么该信息将可被用来导航或是把3D物体模型插入到图像或视频中,使其可根据正确的透视来渲染,并且成为原始场景的一部分(请见增强现实)。

具体的解释可以戳wiki

一、共面点成像

思路:同一物理点,不同成像面之间的关系。

在前面已经讨论了三维物体成像过程,相比之下,还有一种稍简单的情况——平面成像,即所有的物点都处在同一个平面上,我们有理由相信,这种情况下的成像关系是一般立体成像的一种特例。

image

先回顾一下一般的单体成像过程

image

image

image image

image

对于共面的物点,在恰当的世界坐标系中,可以令其中一个坐标值为0,不妨设第三维坐标为0,图示如下:

image

由于物点的第三维坐标为0,整个成像过程的矩阵表示会得到简化。

image

可以简化为一个3X3的矩阵,称之为Homography矩阵,该矩阵是可逆的!!

image

对于正前方的物体平面(垂直于光轴),成像关系将更进一步简化。

image

image

将共面物点经成像之后,再变换为数字图像(u,v)

image

研究共面点成像有什么意义呢?

<think>好的,我需要解释用户提到的“m-planar数据格式”。首先,这个术语听起来有点专业,可能涉及数据存储或结构化的方式。让我先分解问题,确认用户的需求。 “m-planar数据格式”中的“m-planar”可能指的是某种多平面(multi-planar)的结构,或者是与多个平面相关的数据组织形式。在计算机科学和数据处理中,常见的类似术语有“multi-channel”(多通道)或“multi-dimensional”(多维),但“planar”通常指平面或层。例如,在图像处理中,RGB图像可以分为三个平面(红、绿、蓝),每个平面处理一个颜色通道。因此,可能“m-planar”指的是将数据分成多个平面,每个平面处理不同的特征或维度。 接下来,我需要验证这个猜测是否正确。查阅相关文献或资料是否有提及“m-planar”数据格式。不过,可能这是一个特定领域或特定系统中的术语,而非广泛使用的标准术语。如果找不到直接的定义,可能需要根据上下文进行推断。 假设用户是在机器学习或数据处理的上下文中提问,可能“m-planar”指的是一种将数据分布在多个平面上,以优化存储或处理效率的格式。例如,在分布式系统中,数据可能被分片存储在不同的节点(平面),每个平面处理一部分数据。或者,在图形处理中,多平面数据可能指代不同的图层或深度信息。 另一个可能性是,“m-planar”与特定的数据序列化格式有关,比如某种二进制格式,将数据组织成多个平面,每个平面代表不同的属性或维度。例如,在3D数据处理中,可能有X、Y、Z三个平面,或者时间序列数据中的多个时间平面。 如果用户提到的“m-planar”是某个特定框架或工具中的术语,比如Apache Spark、TensorFlow或Hadoop中的某个模块,可能需要查阅相关文档。例如,TensorFlow的Dataset API中有不同的数据格式,但“m-planar”并不常见。 考虑到用户之前询问了神经网络中的element-wise层,可能这次的问题仍然与数据处理或神经网络输入有关。在深度学习中,输入数据通常需要特定的格式,例如图像数据可能以多通道(如RGB)的形式输入,每个通道可以视为一个平面。因此,“m-planar”可能指将数据分解为多个平面,每个平面处理不同的特征,例如时间步、频率带或其他属性。 需要进一步确认是否存在这样的术语。例如,在音频处理中,频谱图可能被分解为多个频率平面;在视频处理中,帧序列可能被视为时间平面。这种情况下,“m-planar”数据格式可能指代这种多维、多平面的数据结构。 总结可能的解释: 1. 多平面数据,每个平面代表不同的特征或通道。 2. 分布式数据存储中的分片或分区策略。 3. 特定领域(如遥感、医学成像)中的多平面图像处理格式。 4. 时间序列或空间数据中的层次化结构。 由于缺乏具体的上下文,可能需要假设最常见的解释,即多平面数据格式,用于组织多维数据的不同方面,每个平面处理一个特定的维度或特征。例如,在计算机视觉中,处理3D数据时,可能将深度、高度、宽度分别作为不同的平面,或者将不同的传感器数据(如RGB、深度、红外)作为多个平面。 此外,需要注意用户可能拼写错误或术语混淆,如“m-planar”是否应为“multi-planar”或其他类似术语。如果确认无误,可以继续基于现有知识进行解释,同时指出可能的变体或相关概念。 最后,确保回答结构清晰,分点说明,帮助用户理解可能的不同情况,并建议提供更多上下文以获得更准确的解答。</think>### **关于“m-planar数据格式”的解析** “m-planar数据格式”并非广泛标准化的术语,但根据领域和上下文,它可能指代一种**多平面(multi-planar)数据组织形式**。以下是可能的解释及常见应用场景: --- #### **1. 基本概念** - **核心定义**:将数据分布在多个“平面”(维度或通道)上,每个平面独立存储或处理特定类型的信息。 - **目标**:优化数据存储效率、提升并行计算能力,或适应多模态输入(如图像、传感器数据等)。 --- #### **2. 常见应用场景** ##### **(1) 图像与视觉处理** - **多通道图像**:例如RGB图像的三个平面(红、绿、蓝),或医学影像(如MRI的不同成像序列)。 - **深度信息**:在3D视觉中,可能将深度图与RGB图像分离为不同平面。 - **数学表示**:若数据为三维张量 $D \in \mathbb{R}^{H \times W \times M}$,则 $M$ 个平面分别对应不同特征(如颜色、深度等)。 ##### **(2) 时间序列与传感器数据** - **多传感器融合**:每个平面对应一个传感器的输入(如温度、湿度、加速度计数据)。 - **时间维度**:将时间序列的多个时间窗口分割为不同平面。 ##### **(3) 分布式存储与计算** - **分片存储**:在分布式系统中,数据按“平面”分片存储在不同节点,例如按哈希分区的键值对。 - **并行处理**:每个平面可独立处理,适用于GPU或分布式计算框架(如Apache Spark)。 ##### **(4) 特定领域格式** - **遥感数据**:卫星图像可能按光谱波段(如红外、可见光)划分平面。 - **神经科学**:脑电信号(EEG)可能按不同电极通道组织为多平面数据。 --- #### **3. 技术特点** - **独立性**:各平面数据可单独处理或组合使用(如特征融合)。 - **高效性**:平面间无交叉依赖,适合并行化操作。 - **灵活性**:支持动态增减平面(如添加新传感器数据)。 --- #### **4. 与相似格式的对比** - **Multi-channel格式**:类似多平面,但通常指紧密耦合的通道(如RGB)。 - **Tensor格式**:多维张量隐含多平面结构,但“m-planar”可能强调平面间的逻辑分离。 - **HDF5/NetCDF**:科学数据中支持多平面存储的通用格式,但需具体实现定义结构。 --- #### **5. 示例代码(伪代码)** 假设存储一个多平面气象数据集(温度、湿度、风速): ```python # 定义3个平面(温度、湿度、风速) data = { "temperature": np.array(...), # 温度平面 "humidity": np.array(...), # 湿度平面 "wind_speed": np.array(...) # 风速平面 } # 访问特定平面 temperature_plane = data["temperature"] ``` --- #### **6. 潜在挑战** - **数据同步**:多平面需保持维度一致(如时间对齐)。 - **存储开销**:平面数量增加可能导致存储压力。 - **融合复杂度**:跨平面特征提取需额外计算(如注意力机制)。 --- ### **总结** “m-planar数据格式”通常指**将数据按逻辑或物理维度分割为多个独立平面**,适用于多模态输入、分布式存储或高效计算场景。具体实现需结合领域需求(如计算机视觉、物联网、科学计算等)。若需更精确的解释,建议提供上下文或参考具体技术文档。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值