由北京大学,浙江大学,蚂蚁集团,中国人大联合发表的首篇GraphRAG综述新鲜出炉!
Graph Retrieval-Augmented Generation: A Survey
论文地址:https://www.arxiv.org/pdf/2408.08921
论文概述
这篇论文是对GraphRAG技术这一新兴研究领域的全面回顾。
GraphRAG技术是大型语言模型(LLMs)进步的一个重要里程碑,它通过将外部库转化为知识图谱来增强语言模型的能力,使得模型在不重新训练的情况下,能够更准确、更全面地生成和理解语言。
这项技术的出现,响应了当前LLMs面临的挑战,如生成不准确信息的“幻觉”现象、缺乏特定领域的知识以及信息更新滞后等问题。作者们对GraphRAG的工作流程、核心技术、训练方法、下游应用、评估标准以及工业案例进行了系统化的梳理和讨论。
此外,论文还对GraphRAG的未来发展进行了展望,提出了新的研究方向,旨在推动该领域理论和实践的进一步发展。
核心内容
2.1 GraphRAG 与现有方法的比较
Retrieval-Augmented Generation (RAG) 是一种将检索机制与生成模型相结合的方法,通过首先检索与问题相关的文档或知识,然后生成模型基于检索结果生成答案或文本。
最近的研究表明,RAG可以显著提高各种基准的生成质量。上图提供了一个直观的比较,展示了直接使用大型语言模型(LLMs)、传统的检索增强生成(RAG)和GraphRAG三者在处理用户查询时的不同方法和效果。
-
直接LLM:在这种方法中,用户查询直接由LLM进行回答,可能会导致回答过于笼统或缺乏专业性。
-
RAG:RAG通过检索相关文本信息来增强LLM的回答,可以在一定程度上缓解直接LLM回答可能存在的问题。然而,这种方法不能挖掘数据之间的关联关系。
-
GraphRAG:与RAG不同,GraphRAG利用图数据中明确的实体和关系表示,通过检索相关结构化信息来实现精确回答。GraphRAG方法能够更有效地捕捉和利用实体间的连接关系,从而提供更准确和全面的答案。
2.2 GraphRAG 架构
文章将GraphRAG分为三个主要阶段:G-Indexing(基于图的索引)、G-Retrieval(图检索)和G-Generation(图增强的生成)。以下是对这三个阶段的具体介绍:
-
G-Indexing(基于图的索引):这是GraphRAG流程的初始阶段,目的是识别或构建一个与下游任务对齐的图数据库G,并在其上建立索引。图数据库可以来源于公开的知识图谱、图数据,或基于专有数据源(如文本或其他形式的数据)构建。索引过程包括映射节点和边的属性、建立连接节点之间的指针,以及组织数据以支持快速遍历和检索操作。
-
G-Retrieval(图检索):继图索引之后,图检索阶段专注于根据用户查询或输入从图数据库中提取相关信息。给定一个用自然语言表达的用户查询,检索阶段的目标是从知识图谱中提取最相关的元素(例如实体、三元组、路径、子图)。
-
G-Generation(图增强的生成):图增强的生成阶段涉及基于检索到的图数据合成有意义的输出或响应。这可能包括回答用户查询、生成报告等。在这个阶段,生成器采用查询、检索到的图元素和一个可选的提示(prompt)作为输入,以生成响应。
总结
这篇综述论文为GraphRAG技术提供了一个全面的概述,从理论基础到实际应用,再到未来的发展。论文不仅系统地回顾了当前的技术和方法,还深入探讨了GraphRAG在不同领域的应用潜力和面临的挑战。此外,论文还提出了未来研究的方向,为该领域的研究者提供了宝贵的参考和启示。
随着人工智能技术的不断进步,GraphRAG作为一种新兴的技术,其在提高语言模型的准确性和全面性方面展现出巨大的潜力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。