例1
欧拉定理:对于凸的多面体,v+f-e=2
凸:连线在内部,多面体:几个多边形按照边粘起来的封闭立体
注:定理较弱,逆定理不成立,例:凹的倒的台,中间出去的部分是一个六面体
点
:
8
+
8
线
:
12
+
12
+
4
面
:
5
+
5
+
4
16
+
14
−
(
12
+
4
+
12
)
=
2
点:8+8\\ 线:12+12+4\\ 面:5+5+4\\ 16+14-(12+4+12)=2
点:8+8线:12+12+4面:5+5+416+14−(12+4+12)=2
但是如果上下都挖穿呢?还会满足吗?
点
:
不
变
线
:
加
四
面
:
减
二
加
四
=
加
二
v
+
f
−
e
=
0
点:不变\\ 线:加四\\ 面:减二加四=加二\\ v+f-e=0
点:不变线:加四面:减二加四=加二v+f−e=0
特
点
:
v
+
f
−
e
=
2
的
表
面
能
够
连
续
变
化
为
球
面
(
0
个
洞
的
轮
胎
面
)
,
v
+
f
−
e
=
0
的
表
面
能
够
连
续
变
化
为
轮
胎
面
(
1
个
洞
的
轮
胎
面
)
,
v
+
f
−
e
=
2
−
2
g
(
g
个
洞
的
轮
胎
面
,
g
学
名
为
曲
面
的
亏
格
)
特点:v+f-e=2的表面能够连续变化为球面(0个洞的轮胎面),\\ v+f-e=0的表面能够连续变化为轮胎面(1个洞的轮胎面),\\ v+f-e=2-2g(g个洞的轮胎面,g学名为曲面的\color{red}亏格\color{black})
特点:v+f−e=2的表面能够连续变化为球面(0个洞的轮胎面),v+f−e=0的表面能够连续变化为轮胎面(1个洞的轮胎面),v+f−e=2−2g(g个洞的轮胎面,g学名为曲面的亏格)
例2
[ 0 , 1 ] ⟶ f [ 0 , 1 ] 具 有 不 动 点 性 质 S 1 ⟶ g S 1 不 具 有 不 动 点 性 质 [0,1]\stackrel{f}{\longrightarrow}[0,1]具有不动点性质 \\S^1\stackrel{g}{\longrightarrow}S^1不具有不动点性质 [0,1]⟶f[0,1]具有不动点性质S1⟶gS1不具有不动点性质