群的拉格朗日定理的应用:欧拉定理的两种证明方法+RSA加密算法

1.模算术

  • 模算术,也称为同余算术,是数学中一个重要的概念,特别是在数论、密码学、计算机科学和抽象代数中。模算术的基本思想是考虑整数在模 n n n下的等价类,其中 n n n是一个正整数。下面列出了一些模算术的关键性质,这些性质使得模算术成为处理整数问题时一个非常强大的工具,尤其是在需要考虑循环和周期性行为的场景中:

  • 同余关系
    如果两个整数 a a a b b b在模 n n n下同余,我们写作 a ≡ b m o d    n a \equiv b \mod n abmodn,这意味着 n n n整除 a − b a-b ab。换句话说, a a a b b b在除以 n n n后有相同的余数。

1.1 等价关系

  • 同余的传递性
    如果 a ≡ b m o d    n a \equiv b \mod n abmodn b ≡ c m o d    n b \equiv c \mod n bcmodn,那么 a ≡ c m o d    n a \equiv c \mod n acmodn

  • 同余的对称性
    如果 a ≡ b m o d    n a \equiv b \mod n abmodn,那么 b ≡ a m o d    n b \equiv a \mod n bamodn

  • 同余的反身性
    对于任何整数 a a a,有 a ≡ a m o d    n a \equiv a \mod n aamodn

1.2 整数环 Z m = { 0 , 1 , 2 , … , m − 1 } Z_m=\{0,1,2,…,m-1\} Zm={0,1,2,m1}

  • Z m Z_{m} Zm集合指的是模 m m m意义下的整数(即加法和乘法运算都是模 m+1 的运算)

加法和乘法运算

  • 加法 a , b ∈ Z m a,b∈Z_m a,bZm a + b = c   m o d   m , c ∈ Z m a+b=c \ mod \ m,c\in Z_m a+b=c mod m,cZm
  • 乘法 a , b ∈ Z m a,b∈Z_m a,bZm a × b = d   m o d   m , d ∈ Z m a\times b=d \ mod \ m,d\in Z_m a×b=d mod m,dZm

加法成Abel群

  • 运算封闭:如果 a ≡ b m o d    m a \equiv b \mod m abmodm c ≡ d m o d    m c \equiv d \mod m cdmodm,那么 a + c ≡ b + d m o d    m a + c \equiv b + d \mod m a+cb+dmodm
  • 结合律: ( a + b ) + c = a + ( b + c ) (a+b)+c = a+(b+c) (a+b)+c=a+(b+c)成立
  • 单位元 :0
  • 逆元:如果 a + b   m o d   m = 0 a+b \ mod \ m =0 a+b mod m=0 ,则a,b互为逆元
  • 交换律:加法交换律, a + b ( m o d   n ) = b + a ( m o d   n ) a+b (mod \ n) = b+a (mod \ n) a+b(mod n)=b+a(mod n)

乘法成幺半群

  • 运算在整数集合封闭:如果 a ≡ b m o d    m a \equiv b \mod m abmodm c ≡ d m o d    m c \equiv d \mod m cdmodm,那么 a c ≡ b d m o d    m ac \equiv bd \mod m acbdmodm
  • 结合律 : ( a × b ) × c = a × ( b × c ) (a\times b)\times c = a\times (b\times c) (a×b)×c=a×(b×c)成立
  • 单位元: 1
  • 注:其实也满足交换律

乘法对加法的分配性

  • a × ( b + c ) = ( a × b ) + ( a × c ) 和 ( b + c ) × a = ( b × a ) + ( c × a ) a×(b+c)=(a×b)+(a×c) 和 (b+c)×a=(b×a)+(c×a) a×(b+c)=(a×b)+(a×c)(b+c)×a=(b×a)+(c×a)成立。

1.3 模算术的幂运算

  • 如果 a ≡ b m o d    n a \equiv b \mod n abmodn,那么对于任何非负整数 k k k,有 a k ≡ b k m o d    n a^k \equiv b^k \mod n akbkmodn

1.4 欧拉定理

  • 如果整数 a a a n n n互质,且 a a a n n n互素(即 g c d ( a , n ) = 1 gcd(a, n) = 1 gcd(a,n)=1),那么 a ϕ ( n ) ≡ 1 m o d    n a^{\phi(n)} \equiv 1 \mod n aϕ(n)1modn,其中 ϕ ( n ) \phi(n) ϕ(n)是欧拉函数,表示小于 n n n且与 n n n互质的正整数的个数。

证明过程甲:

我们将通过数论中的几个重要概念和定理来证明欧拉定理。

欧拉函数
  • 首先,欧拉函数 ϕ ( n ) \phi(n) ϕ(n) 是小于 n n n且与 n n n互素的正整数的个数。例如:
    ϕ ( 12 ) = 4 \phi(12) = 4 ϕ(12)=4因为小于 12 且与 12 互素的数是 1, 5, 7, 和 11。
群论的概念
  • 考虑整数模 n n n 的乘法群,即由所有与 n n n 互素的整数模 n n n 所组成的集合。这些整数在模 n n n 意义下构成一个群,其阶为 ϕ ( n ) \phi(n) ϕ(n)
拉格朗日定理
  • 拉格朗日定理告诉我们,如果 G G G 是一个有限群,且 H H H G G G 的子群,那么 H H H 的阶(即元素个数)整除 G G G 的阶。因此,对于群 G G G中的任意元素 g g g,有 g ∣ H ∣ = e g^{|H|} = e gH=e,其中 e e e是群 G G G 的单位元。
证明:
  • G ( n ) G(n) G(n)是整数模 n n n意义下与 n n n 互素的整数所构成的群 G G G,其阶为 ϕ ( n ) \phi(n) ϕ(n)。对于 a ∈ U ( n ) a \in U(n) aU(n)

    • G ( n ) G(n) G(n) 是一个有限的乘法群,且 a ∈ G ( n ) a \in G(n) aG(n)
    • 根据拉格朗日定理,群中每个元素 a a a 的阶必须整除群的阶 ϕ ( n ) \phi(n) ϕ(n)
    • 因此,对 a ∈ G ( n ) a \in G(n) aG(n),存在正整数 k k k 使得:
      a k = e a^k = e ak=e
      其中 e e e是单位元。在模 n n n 意义下,这意味着:
      a ϕ ( n ) ≡ 1 ( m o d n ) a^{\phi(n)} \equiv 1 \pmod{n} aϕ(n)1(modn)

证明过程乙:

构造集合S
  • 是所有小于 n n n且与 n n n 互质的整数集合 S = { x 1 , x 2 , … , x ϕ ( n ) } S = \{ x_1, x_2, \dots, x_{\phi(n)}\} S={x1,x2,,xϕ(n)}
构造集合T
  • 考虑集合 T = { a ⋅ x 1 , a ⋅ x 2 , … , a ⋅ x ϕ ( n ) } T = \{a \cdot x_1, a \cdot x_2, \dots, a \cdot x_{\phi(n)}\} T={ax1,ax2,,axϕ(n)} n n n 的结果,其中 a a a是与 n n n 互质的整数。

  • 重要条件因为 gcd ⁡ ( a , n ) = 1 \gcd(a, n) = 1 gcd(a,n)=1,所以集合 T T T 中的每个元素 a ⋅ x i a \cdot x_i axi都是与 n n n互质的,并且 T T T中的每个元素都在集合 S S S中的某个元素模 n n n 的剩余类(等价类)中。

  • 证明 T T T S S S 的置换

    • 集合 T T T 中的所有元素都是 S S S 的元素。由于 T T T 中的元素个数与 S S S 相同,且 T T T 中的元素互不相同(因为如果 a ⋅ x i ≡ a ⋅ x j ( m o d n ) a \cdot x_i \equiv a \cdot x_j \pmod{n} axiaxj(modn),那么 x i ≡ x j ( m o d n ) x_i \equiv x_j \pmod{n} xixj(modn)由于 gcd ⁡ ( a , n ) = 1 \gcd(a, n) = 1 gcd(a,n)=1),因此 T T T S S S 的一个置换。
比较积
  • 由于 T T T S S S 的一个置换,因此两个集合的乘积是模 n n n 同余的:
    ( a ⋅ x 1 ) ⋅ ( a ⋅ x 2 ) ⋅ ⋯ ⋅ ( a ⋅ x ϕ ( n ) ) ≡ x 1 ⋅ x 2 ⋅ ⋯ ⋅ x ϕ ( n ) ( m o d n ) . (a \cdot x_1) \cdot (a \cdot x_2) \cdot \dots \cdot (a \cdot x_{\phi(n)}) \equiv x_1 \cdot x_2 \cdot \dots \cdot x_{\phi(n)} \pmod{n}. (ax1)(ax2)(axϕ(n))x1x2xϕ(n)(modn).
  • 将左侧的乘积展开,得到:
    a ϕ ( n ) ⋅ ( x 1 ⋅ x 2 ⋅ ⋯ ⋅ x ϕ ( n ) ) ≡ x 1 ⋅ x 2 ⋅ ⋯ ⋅ x ϕ ( n ) ( m o d n ) . a^{\phi(n)} \cdot (x_1 \cdot x_2 \cdot \dots \cdot x_{\phi(n)}) \equiv x_1 \cdot x_2 \cdot \dots \cdot x_{\phi(n)} \pmod{n}. aϕ(n)(x1x2xϕ(n))x1x2xϕ(n)(modn).
  • 由于 x 1 , x 2 , … , x ϕ ( n ) x_1, x_2, \dots, x_{\phi(n)} x1,x2,,xϕ(n)互质于 n n n,因此可以在模 n n n 下消去这个乘积:
    a ϕ ( n ) ≡ 1 ( m o d n ) . a^{\phi(n)} \equiv 1 \pmod{n}. aϕ(n)1(modn).

2. RSA算法

  • RSA算法是一种非对称加密算法,广泛应用于安全通信、数字签名等领域。它的名称来自于发明者Ron Rivest、Adi Shamir和Leonard Adleman的首字母。RSA算法的核心思想基于大整数分解的数学难题,尤其是质因数分解的难度。RSA的安全性依赖于大整数的质因数分解难度。对于足够大的 n n n,即使知道公钥 ( e , n ) (e, n) (e,n),要想通过暴力手段破解私钥 d d d 几乎是不可能的,因为这需要对 n n n 进行质因数分解,而这在目前的计算能力下是不可行的。

2.1 RSA算法的工作原理:

  • 密钥生成

    • 选择两个大质数 p p p q q q,然后计算它们的乘积 n = p × q n = p \times q n=p×q。$ n $ 会成为公钥和私钥的一部分。

    • 计算 n n n 的欧拉函数值: ϕ ( n ) = ( p − 1 ) × ( q − 1 ) \phi(n) = (p-1) \times (q-1) ϕ(n)=(p1)×(q1)用来生成密钥。

    • 选择一个整数 e e e,满足 1 < e < ϕ ( n ) 1 < e < \phi(n) 1<e<ϕ(n) e e e ϕ ( n ) \phi(n) ϕ(n) 互质。这个 e e e 是加密的公钥指数。

    • 通过求解 d × e ≡ 1   ( mod  ϕ ( n ) ) d \times e \equiv 1 \ (\text{mod} \ \phi(n)) d×e1 (mod ϕ(n)) 来找到 d d d,即 d d d e e e 的模 ϕ ( n ) \phi(n) ϕ(n) 的乘法逆元。这个 d d d 是解密的私钥指数。

    • 公钥 ( e , n ) (e, n) (e,n)

    • 私钥 ( d , n ) (d, n) (d,n)

  • 加密

    • 发送方使用接收方的公钥 ( e , n ) (e, n) (e,n) 对消息 m m m 进行加密,计算密文 c c c
      c = m e  mod  n c = m^e \ \text{mod} \ n c=me mod n
    • 加密后的密文 c c c 可以公开发送。
  • 解密

    • 接收方使用自己的私钥 ( d , n ) (d, n) (d,n) 对密文 c c c 进行解密,恢复原始消息 m m m
      m = c d  mod  n m = c^d \ \text{mod} \ n m=cd mod n
    • 由于私钥只有接收方知道,只有接收方可以解密密文并恢复原始信息。
  • 13
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值