两直线的交点

直线方程1:
a 0 x + b 0 y + c 0 = 0 a_0x + b_0y + c_0 = 0 a0x+b0y+c0=0
直线方程1的齐次表示:
I 0 : ( a 0 , b 0 , c 0 ) I_0 : (a_0, b_0, c_0) I0:(a0,b0,c0)
直线方程2:
a 1 x + b 1 y + c 1 = 0 a_1x + b_1y + c_1 = 0 a1x+b1y+c1=0
直线方程2的齐次表示:
I 1 : ( a 1 , b 1 , c 1 ) I_1 : (a_1, b_1, c_1) I1:(a1,b1,c1)
根据射影几何的相关内容,两直线的交点的齐次坐标形式为:
p = I 0 × I 1 p = I_0 \times I_1 p=I0×I1
p : ( b 1 ∗ c 2 − c 1 ∗ b 2 , c 1 ∗ a 2 − a 1 ∗ c 2 , a 1 ∗ b 2 − b 1 ∗ a 2 ) p : (b_1 * c_2 - c_1 * b_2, c_1 * a_2 - a_1 * c_2, a_1 * b_2 - b_1 * a_2) p:(b1c2c1b2,c1a2a1c2,a1b2b1a2)
简记为:
p : ( x 0 , y 0 , z 0 ) p:(x_0, y_0, z_0) p:(x0,y0,z0)

z 0 = 0 z_0 = 0 z0=0时,直线重合则交点无穷多,直线不重合,则平行,交点位于无穷远处,在欧式几何框架下,解不存在;
z 0 ! = 0 z_0!=0 z0!=0时,交点为 ( x 0 z 0 , y 0 z 0 ) (\frac{x_0}{z_0}, \frac{y_0}{z_0}) (z0x0,z0y0),即
( b 1 ∗ c 2 − c 1 ∗ b 2 a 1 ∗ b 2 − b 1 ∗ a 2 , c 1 ∗ a 2 − a 1 ∗ c 2 a 1 ∗ b 2 − b 1 ∗ a 2 ) (\frac{b_1 * c_2 - c_1 * b_2}{a_1 * b_2 - b_1 * a_2}, \frac{c_1 * a_2 - a_1 * c_2}{a_1 * b_2 - b_1 * a_2}) (a1b2b1a2b1c2c1b2,a1b2b1a2c1a2a1c2)

参考文献:
《Multiple View Geometry in Computer Vision》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值