直线方程1:
a
0
x
+
b
0
y
+
c
0
=
0
a_0x + b_0y + c_0 = 0
a0x+b0y+c0=0
直线方程1的齐次表示:
I
0
:
(
a
0
,
b
0
,
c
0
)
I_0 : (a_0, b_0, c_0)
I0:(a0,b0,c0)
直线方程2:
a
1
x
+
b
1
y
+
c
1
=
0
a_1x + b_1y + c_1 = 0
a1x+b1y+c1=0
直线方程2的齐次表示:
I
1
:
(
a
1
,
b
1
,
c
1
)
I_1 : (a_1, b_1, c_1)
I1:(a1,b1,c1)
根据射影几何的相关内容,两直线的交点的齐次坐标形式为:
p
=
I
0
×
I
1
p = I_0 \times I_1
p=I0×I1
p
:
(
b
1
∗
c
2
−
c
1
∗
b
2
,
c
1
∗
a
2
−
a
1
∗
c
2
,
a
1
∗
b
2
−
b
1
∗
a
2
)
p : (b_1 * c_2 - c_1 * b_2, c_1 * a_2 - a_1 * c_2, a_1 * b_2 - b_1 * a_2)
p:(b1∗c2−c1∗b2,c1∗a2−a1∗c2,a1∗b2−b1∗a2)
简记为:
p
:
(
x
0
,
y
0
,
z
0
)
p:(x_0, y_0, z_0)
p:(x0,y0,z0)
当
z
0
=
0
z_0 = 0
z0=0时,直线重合则交点无穷多,直线不重合,则平行,交点位于无穷远处,在欧式几何框架下,解不存在;
当
z
0
!
=
0
z_0!=0
z0!=0时,交点为
(
x
0
z
0
,
y
0
z
0
)
(\frac{x_0}{z_0}, \frac{y_0}{z_0})
(z0x0,z0y0),即
(
b
1
∗
c
2
−
c
1
∗
b
2
a
1
∗
b
2
−
b
1
∗
a
2
,
c
1
∗
a
2
−
a
1
∗
c
2
a
1
∗
b
2
−
b
1
∗
a
2
)
(\frac{b_1 * c_2 - c_1 * b_2}{a_1 * b_2 - b_1 * a_2}, \frac{c_1 * a_2 - a_1 * c_2}{a_1 * b_2 - b_1 * a_2})
(a1∗b2−b1∗a2b1∗c2−c1∗b2,a1∗b2−b1∗a2c1∗a2−a1∗c2)
参考文献:
《Multiple View Geometry in Computer Vision》