labelCloud 开源三维点云工具标注自制点云数据集(以.bin格式点云为例)

本文介绍了如何使用LabelCloud进行点云数据集的标注,包括软件安装步骤、标注技巧以及基于Open3D的可视化方法。通过QWE/ASD移动和X/Y转动标注框,鼠标滚轮调节尺寸和视野,实现高效标注。同时,文章详细阐述了标注后的标签转换和在Lidar坐标系下的可视化操作,确保与KITTI数据集格式一致。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、软件安装

1.以如下命令安装(下载可能有问题,需要网络好一些):

git clone https://github.com/ch-sa/labelCloud.git

2.在Conda环境下新建一个虚拟环境安装标注软件所需的依赖(对网速有要求):

conda create -n label3.8 python=3.8 -y

3.进入创建的虚拟环境:

conda activate label3.8

4.将需要标注的.bin格式(已经转换好)的点云文件放入pointclouds文件夹下(labels为标注好后对应保存标签的位置):

在下载的标注软件labelCloud路径下启动配置的虚拟环境,安装相关依赖:

pip install -r requirements.txt

输入如下代码启动软件(展示的是已标注好的):

python labelCloud.py

二、标注Tricks

1.标注框移动:

QWE 控制框上下、左右、前后移动;
 ASD

2.标注框转动:

X/Y控制标注框转动,标注时尽量将标注框内显示的箭头指向车头朝向位置;

3.标注框(单面)尺寸调节:

鼠标停留在标注框某个面上后,移动滚轮可调节当前标注框鼠标所在面的大小(前后移动);

4.标注视野移动:

鼠标点击长按右键并拖动鼠标,能够移动视野区域;

5.标注视野分辨率改变:

鼠标只在标注视野内滚动滚轮则为改变视野分辨率(放大或缩小);

6.标注设置:

在顶栏找到“Setting==>Change Setting”按钮可对标注内容进行设置(框初始大小,类别数量,标注格式)。

三.基于Open3d可视化:

1.标注好后的标签如下:

 红框内数据按位分别表示: h w l(高宽长) x y z(相机坐标系下标注框的几何中心) yaw(相机坐标系下的朝向角),即标注形式与kitti数据集标注格式保持一致(除了xyz,kitti是底面中心),因此在Lidar坐标系下可视化需要对应转换,有关Lidar坐标系和Cam坐标系的表达可参考:

KITTI 3D目标检测数据集解析(完整版)_Maples丶丶的博客-CSDN博客_kitti目标检测

2.令Lidar坐标系下对应数据设置为:h` w` l` x` y` z` yaw`,则有如下关系:

h`=h  w`=w  l`=l  x`=z  y`=-x  z`=-y   yaw`=yaw + pi/2

根据对应关系可在Lidar坐标系下可视化对应的标注结果,如下:


总结

最后感谢:利用 labelCloud 开源工具标注自己的点云数据集为KITTI标注格式教程(支持pcd、bin格式点云)_用券买土豆的博客-CSDN博客_点云数据集标注

提供的参考。

LabelCloud是一种针对点云数据的人工智能标注工具,特别是在无人驾驶和物体检测领域中广泛用于创建3D对象实级别的注释。如果你想将纯点云数据转化为类似Kitti那样的标签文件,你需要按照以下步骤操作: 1. **理解Kitti格式**:首先,了解Kitti的anno.txt格式,它包含了物体的位置(中心坐标、尺寸)、朝向、类别ID等信息。对于人(一般表示为人v2类别)的检测,你会需要记录位置(XYZ)、大小(长宽高)、旋转角度以及是否可见等属性。 2. **数据解析**:使用LabelCloud或其他点云处理库(如PCL或lidar_point_cloud),解析你的点云数据,提取出每个个体的3D轮廓点和关键特征。 3. **标注人员**:手动或通过半自动工具识别并标记点云中的行人,这可能涉及到选择特定的点作为对象边界,估计其体积,并确定其方向。 4. **生成标签**:对于每一个行人,创建一个包含类别ID(如0对应于人v2类别),中心点坐标,尺寸信息,以及如果有的话,可能的角度信息的新行。每一行应遵循anno.txt格式如: ``` 0 0.5 1.8 2.5 -0.5 0.1 0.1 1.0 0.9 1.0 ``` 这里依次是类别ID、X、Y、Z坐标、长度、宽度、高度、正面朝向的X轴旋转角、正面朝向的Y轴旋转角和Z轴旋转角。 5. **保存为txt文件**:最后,将所有这些标注信息保存到一个新的文本文件中,每行代表一个样本,便于后续训练模型。
评论 33
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值