Robotstudio软件:工作站中多台机器人I/O通信仿真实现

本文已经首发在个人微信公众号:工业机器人仿真与编程(微信号:IndRobSim),欢迎关注!

真实的机器人工作站中往往都是由多台机器人组成的,它们在工作站中分别承担着各自的任务,为了工作任务的有序进行,机器人与机器人之间就要进行信号交互,以协调各自的工作顺序。这种机器人与机器人之间的信号交互在现实工作站中一般都是由主控PLC来完成的,同样的Robotstudio软件中也可以进行多台机器人之间的信号交互仿真,只是软件中使用的不是PLC,那么用的是什么呢?本期就来为大家介绍一下。

一、多机器人工作站创建

1.“基本”菜单下,从“ABB模型库”中添加多台机器人模型,这里以3台IRB 120机器人为例,添加完成将3台机器人移动到合适位置。

2.“从布局生成机器人系统”,系统名称分别命名为MultiRobot_System_1,选择系统的机械装置中只勾选第1台机器人名称IRB_120_3_58_01,然后选择相应的系统配置选项,点击完成按钮,第1台机器人创建系统完成。

3.参考步骤2分别为第2台机器人、第3台机器人创建系统,这样就分别创建了三台机器人的三个独立控制系统。

注:在不进行多台机器人各轴协调工作的情况下,多台机器人系统创建时一定要在“选择系统的机械装置”步骤时单独勾选机器人分别进行系统配置,这样才能创建出独立的机器人控制系统。

二、I/O信号配置

1.“控制器”菜单下,左侧浏览树中点选第1台机器人控制系统“MultiRobot_System_1”,然后点击“配置”下的小三角,在弹出的下拉菜单中选择“I/O System”,打开配置- I/O System窗口。

2.左侧浏览树中右击“DeviceNet Device”,在弹出的快捷菜单中选择“新建DeviceNet Device”,实例编辑器对话框中做如下图所示设置,点击确定按钮,机器人I/O通信板卡配置完成。

3.左侧浏览树中右击“Signal”,在弹出的快捷菜单中选择“新建Signal”,实例编辑器对话框中做如下图所示设置,此为机器人1向机器人2发送的信号,点击确定按钮。

3.参考上述步骤1~2为机器人1、机器人2、机器人3分别进行I/O信号配置,配置参数如下表所示。

Multiple_Robots_1信号驱动配置参数

使用来自模板的值

Name

Address

DSQC 652 24VDV I/O Device

D652

10

Multiple_Robots_2信号驱动配置参数

使用来自模板的值

Name

Address

DSQC 652 24VDV I/O Device

D652

10

Multiple_Robots_3信号驱动配置参数

使用来自模板的值

Name

Address

DSQC 652 24VDV I/O Device

D652

10

机器人1 I/O信号配置参数

序号

Name

Type of Signal

Assigned to Device

Device Mapping

1

do_2

Digital Output

d652

0

2

do_3

Digital Output

d652

1

3

di_2

Digital Input

d652

0

4

di_3

Digital Input

d652

1

机器人2 I/O信号配置参数

序号

Name

Type of Signal

Assigned to Device

Device Mapping

1

do_1

Digital Output

d652

0

2

do_3

Digital Output

d652

1

3

di_1

Digital Input

d652

0

4

di_3

Digital Input

d652

1

机器人3 I/O信号配置参数

序号

Name

Type of Signal

Assigned to Device

Device Mapping

1

do_1

Digital Output

d652

0

2

do_2

Digital Output

d652

1

3

di_1

Digital Input

d652

0

4

di_2

Digital Input

d652

1

三、工作站逻辑设置

现实的机器人工作站中,多台机器人的信号交互是通过PLC实现的。在软件仿真中,机器人与机器人之间的信号交互则需要在工作站逻辑中进行设置。

1.在“仿真”菜单栏下,点击“工作站逻辑”按钮,弹出工作站逻辑设置对话框,点击上方的“信号与连接”属性标签,切换到工作站信号与连接添加对话框。

2.在I/O连接属性下,点击下方的“添加I/O Connection”,为工作站创建信号连接,如下图所示。

说明:以上的信号连接是将机器人1、机器人2、机器人3两两之间发送与接收的信号进行连接。

四、仿真运行

1.“控制器”菜单下,点选左侧浏览树中的机器人控制器,然后点击上方的“控制面板”命令按钮,在弹出的控制面板中分别设置机器人1、机器人2、机器人3为“手动”操作模式。

2.“仿真”菜单下,左侧浏览树中点选机器人1,然后点击上方的“I/O仿真器”,在弹出的I/O信号仿真面板中,设备下点选d652,输出/输出信号切换为机器人配置的I/O信号。

3.参考步骤2,为机器人2、机器人3分别打开I/O仿真器面板,然后分别点击下方的输出信号,可以看到与其进行交互的机器人输入信号有接收显示。

更多内容,请关注公众号IndRobSim。

<think>嗯,用户想了解Java项目中频繁Full GC的现象、原因和影响。首先,我得回忆一下JVM的垃圾回收机制。根据引用[2],Full GC会清理整个堆内存,包括新生代、老年代和元空间。频繁的Full GC肯定会导致应用性能下降,比如停顿时间变长,影响用户体验。 那现象方面,用户可能会注意到应用卡顿,监控工具显示Full GC次数多,内存使用率高,甚至OOM错误。比如引用[3]提到Young GC频繁导致对象进入老年代,进而触发Full GC。所以需要解释现象的时候,要结合监控数据和实际应用表现。 接下来是原因。可能的原因有很多,比如内存分配不合理,老年代空间不足,元空间不足,代码中有内存泄漏,或者显式调用了System.gc()。引用[1]和[3]提到高并发或大数据处理导致对象快速进入老年代,Survivor区太小。这时候需要分点说明每个原因的具体情况,比如大对象直接进入老年代,或者长期存活的对象积累。 然后是影响,主要涉及性能、可用性和资源成本。频繁的Full GC会导致长时间的停顿,影响响应时间,甚至让用户觉得应用卡死。引用[4]强调优化GC的重要性,所以影响部分要突出对用户体验和系统稳定性的威胁。 最后,用户可能需要知道如何排查和解决这些问题。比如检查内存配置,分析GC日志,优化代码减少对象创建。引用[4]提到合理设置堆内存和GC策略,所以优化策略部分需要给出具体的建议,比如调整Survivor区比例,使用G1GC等。 还要注意用户可能没有说出来的需求,比如他们可能遇到了具体的性能问题,需要快速定位原因。所以在回答时要结构清晰,分点列出,便于用户对照检查自己的系统情况。同时,生成的相关问题要引导用户深入探讨解决方案和优化方法,帮助他们进一步学习。</think>### Java频繁Full GC的现象、原因及影响分析 #### 一、现象描述 1. **应用性能显著下降** 频繁的Full GC会导致应用线程暂停(Stop-The-World),表现为接口响应时间变长、吞吐量降低,严重时可能触发超时或服务不可用[^2][^4]。 2. **监控指标异常** - GC日志中`Full GC`关键字出现频率高,且单次耗时超过1秒(如`Full GC (Ergonomics) 1000ms`) - 老年代内存使用率持续接近100%,或频繁出现内存锯齿状波动[^3][^4] - 系统监控工具(如Prometheus、JVisualVM)显示堆内存无法有效回收 3. **伴随异常现象** - `OutOfMemoryError`错误频繁出现 - 容器化部署时因内存超限触发Pod重启 --- #### 二、核心原因 ##### 1. **内存分配不合理** - **Survivor区过小**:Young GC后存活对象无法被Survivor区容纳,直接晋升老年代 $$ \text{晋升条件} = \text{对象年龄} > \text{MaxTenuringThreshold} \quad \text{或} \quad \text{Survivor空间不足} $$ - **大对象直接分配老年代**:如未设置`-XX:PretenureSizeThreshold`,大数组或缓存对象跳过Eden区 ##### 2. **内存泄漏** - 静态集合类持有短生命周期对象 - 未关闭的数据库连接、文件流等资源 - 第三方库未正确释放Native Memory ##### 3. **GC触发条件** - **老年代空间不足**:Major GC后仍无法满足新对象分配 - **元数据区溢出**:未设置`-XX:MaxMetaspaceSize`时,动态生成类过多(如Spring AOP) - **显式调用System.gc()**:未配置`-XX:+DisableExplicitGC`时可能误触发 ##### 4. **外部因素** - 高并发场景下请求量突增,瞬时产生大量临时对象 - 缓存策略不当,如未设置LRU淘汰机制导致缓存膨胀 --- #### 三、主要影响 | 影响维度 | 具体表现 | |-----------------|--------------------------------------------------------------------------| | **性能** | 99%响应时间(TP99)恶化,吞吐量下降超过50%[^4] | | **可用性** | 网关层触发熔断机制,微服务调用链路中断 | | **资源成本** | 为缓解问题被迫扩容机器,CPU/内存资源浪费 | | **数据一致性** | 长时间GC导致分布式事务超时,引发数据回滚 | --- #### 四、排查与优化建议 1. **基础排查步骤** ```bash # 查看GC统计(JDK9+) jcmd <pid> GC.class_histogram # 生成堆转储文件 jmap -dump:live,format=b,file=heap.hprof <pid> ``` 2. **关键JVM参数调整** ```ini # 老年代与新生代比例 -XX:NewRatio=3 # Survivor区与Eden区比例 -XX:SurvivorRatio=8 # 大对象阈值(单位KB) -XX:PretenureSizeThreshold=1024 ``` 3. **高级优化方向** - 使用G1GC替换ParallelGC:`-XX:+UseG1GC` - 启用元空间监控:`-XX:NativeMemoryTracking=detail` - 限制动态类生成:如配置CGLIB缓存策略 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IndRobSim

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值