【滑模控制二阶系统固定时间一致性】多智能体系统中基于固定时间收敛滑模面的鲁棒二阶共识研究(Matlab代码实现)

      💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码、Simulink仿真、文章下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

摘要——在许多应用中,总是追求更快的收敛速度。由于固定时间控制结构的收敛时间不依赖于初始条件,与提供更快收敛速度的其他控制方法不同,设计固定时间控制近年来受到了广泛关注。本文提出了一种用于多智能体系统二阶共识的新型分布式算法,通过采用全阶固定时间收敛滑模面实现。利用李雅普诺夫函数和双齐次性质进行稳定性分析。此外,所提出的控制方法是平滑的,且不存在任何奇异性。在存在Lipschitz干扰和网络不确定性的情况下,验证了所提方案的鲁棒性。通过与现有先进方法的比较,展示了所提方法的有效性。
关键词——共识,固定时间收敛,多智能体系统,鲁棒性,滑模控制(SMC)。

摘要
多智能体系统的协同控制已在许多领域得到应用,例如电网、无人机、神经传感器网络、编队控制和生物系统等,并成为研究的热门话题。为了实现全局目标,多智能体系统协同控制的重要思想是利用每个智能体的局部邻域信息设计分布式控制器。通常,在分布式局部协议下,智能体可以通过合作实现全局目标。合作的主要含义是,多智能体系统中的智能体不仅与邻居局部共享信息,还尝试在一定程度上达成共识。在协同控制下,典型的集体全局行为在文献中有多种名称,例如共识、同步、集群或群体行为–。共识问题主要关注一群自主智能体如何在位置、速度或任何其他感兴趣的物理量上达成一致。一阶共识在过去十年中得到了广泛讨论,如果网络在时间演变过程中保持适当连接,则可以在任何网络中实现共识。事实上,在许多实际应用中,智能体的状态由位置和速度共同控制。因此,当前的研究重点是具有二阶动态的多智能体系统的共识问题。近年来,在多智能体系统的二阶共识方面已取得许多有趣的结果–。然而,在所有这些方法中,使用线性控制器实现的共识主要是渐近的。然而,在许多实际应用中,有限时间共识更适合于更高的精度和更好的收敛速度。近年来,有限时间共识在多智能体系统中受到了广泛关注–。然而,在所有这些有限时间共识方法中,实现共识的收敛时间仍然依赖于初始条件,即初始条件与平衡点的距离越远,收敛时间越长。
由于安全原因或为了提高生产效率,一些实际应用需要对时间响应进行严格约束。例如,导弹或任何空中发射车辆可能会受到强风的严重影响,使其偏离期望轨迹,从而产生较大的初始跟踪误差。这促使研究人员专注于开发一类控制器,其收敛时间不依赖于初始条件,并且文献中有关于所谓的固定时间收敛和固定时间共识的理论分析–。在所有这些固定时间共识方法中,仅考虑了一阶共识,即仅实现了位置误差的收敛。最近,一些研究开始关注在固定时间内实现二阶共识–。然而,在大多数情况下,仅考虑了每个智能体的二阶动态。此外,为了实现其实际应用,还需要连续的鲁棒控制。大多数用于实现固定时间共识的控制策略本质上是不连续的,因此对其实际应用提出了许多问题。在中,左等人提出了一种固定时间共识策略,用于具有高阶积分器动态和不连续控制的多智能体系统。此外,在讨论固定时间收敛时,还需要分析控制代价和收敛时间,这在早期的研究中是缺失的。
物理系统通常会受到各种干扰和不确定性的影晌。在线性控制器存在的情况下,这些异常现象的性能会恶化,因此总是需要为这些系统设计鲁棒控制器,而干扰的性质实际上是未知的。滑模控制(SMC)是一种非线性鲁棒控制策略,易于实现,其控制输入实际上是不连续的。事实上,这在许多机械系统中是一个缺点,因为这种不连续性会导致高频切换,这是不受欢迎的。因此,滑模控制领域的最新研究涉及设计连续的鲁棒控制策略。值得一提的是,滑模控制在滑动过程中实现的收敛可以是渐近的,也可以是有限时间的,这取决于滑模面的选择。此外,它主要取决于状态的初始条件。
本文的主要贡献在于提出了一种新颖的解耦分布式连续滑模控制策略,为多智能体系统提供固定时间二阶共识。所提出方法的一个重要特点是它可以推广到任意阶智能体动态。一个有趣的现象是,智能体的状态在滑模面上是耦合的。然而,滑模状态从这个表面解耦出来,这使得滑模控制器的设计独立于智能体之间的耦合程度。所提出的滑模面将提供固定时间共识,即不依赖于初始条件。在智能体动态存在Lipschitz干扰和网络结构存在不确定性的情况下,验证了所提出控制器的鲁棒性。此外,将所提出的方案与一种最先进的技术进行了比较,发现所提出的方案的平均控制代价相对较小。
本文的其余部分安排如下:第II节描述了一些基本定义和符号;第III节讨论了图论的一些初步概念;第IV节描述了每个智能体的二阶动态以及问题的表述;第V节讨论了一种新颖的固定时间收敛全阶滑模面,并通过双齐次性证明了固定时间收敛;第VI节设计了控制策略,以确保轨迹在有限时间内到达所提出的滑模面;第VII节展示了仿真结果,并与现有方法进行了详细比较;第VIII节对本文进行了总结,并提出了未来的研究方向。

在本文中,提出了一种新的解耦固定时间收敛方案,用于多智能体系统的二阶共识,并采用了连续控制方法。基于双齐次性质,设计了一种分布式全阶固定时间收敛滑模面,在该滑模面上,滑模状态得以解耦。所设计的控制策略应用于解耦的滑模状态,以确保轨迹在有限时间内到达滑模面。一旦轨迹到达滑模面,控制策略将确保它们永远不会离开该表面,并且可以在固定时间内沿着该表面实现二阶共识。本文所设计的控制策略是平滑的,且不存在严重的抖动现象,这实际上是滑模控制(SMC)设计中的一个主要挑战。在存在Lipschitz干扰和链路不确定性的情况下,验证了所提方案的鲁棒性。未来的工作将主要集中在将所提出的控制方案应用于更具挑战性的具有有向拓扑结构的多智能体系统。此外,将进一步研究如何使到达阶段对初始条件不敏感。

📚2 运行结果

部分代码:

% figure(1)%位置估计
% plot(t,y7(:,1),t,y5(:,[1 2 3 4 5]))
% legend('x_{0,1}','{\hat{x}_{0,1}}^1','{\hat{x}_{0,1}}^2','{\hat{x}_{0,1}}^3','{\hat{x}_{0,1}}^4','{\hat{x}_{0,1}}^5','interpreter','latex','linewidth',1.5,'fontsize',15);

% figure(2)%速度估计
% plot(t,y7(:,2),t,y5(:,[1 2 3 4 5]+5))
% legend('v_{0,1}','{\hat{v}_{0,1}}^1','{\hat{v}_{0,1}}^2','{\hat{v}_{0,1}}^3','{\hat{v}_{0,1}}^4','{\hat{v}_{0,1}}^5','interpreter','latex','linewidth',1.5,'fontsize',15);

% figure(3)%加速度估计
% plot(t,y7(:,3),t,y5(:,[1 2 3 4 5]+5+5))
% legend('a_{0,1}','{\hat{a}_{0,1}}^1','{\hat{a}_{0,1}}^2','{\hat{a}_{0,1}}^3','{\hat{a}_{0,1}}^4','{\hat{a}_{0,1}}^5','interpreter','latex','linewidth',1.5,'fontsize',15);

%%%位置跟踪误差
figure(1)
% subplot(1,2,1)
plot(t,y(:,[1 2 3 4 5]),'lineWidth',1.5)
legend('x_1','x_2','x_3','x_4','x_5');
xlabel('时间/s')
ylabel('智能体的位置状态轨迹')

% title({'智能体位置初始值 x(0)=(1,2,3,4,5)'},'FontSize',15);% title换行,两行的内容用分号隔开,再用大括号括起来。
% title({'智能体位置初始值 x(0)=(10,20,30,40,50)'},'FontSize',15);% title换行,两行的内容用分号隔开,再用大括号括起来。
% set(gca,'FontSize',15);

figure(2)
%%%速度跟踪误差
% subplot(1,2,2)
plot(t,y(:,[1 2 3 4 5]+5),'LineWidth',1.5)
legend('v_1','v_2','v_3','v_4','v_5');
xlabel('时间/s')
ylabel('智能体的速度状态轨迹')

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈Matlab代码、Simulink仿真、文章下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值