💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
含氢气氨气综合能源系统优化调度研究
一、系统定义与组成结构
含氢气氨气综合能源系统(H₂-NH₃ Integrated Energy System)是一种多能互补系统,以氢气和氨气为能量载体,整合可再生能源(风、光)、传统能源(火电)、储能装置及化工生产单元,实现电-热-氢-氨的协同转换与高效利用。其核心组成包括以下模块:
- 能源输入层:以风电、光伏为主的可再生能源发电单元,辅以火电或电网调峰支持。
- 制氢与储运单元:
- 电解水制氢(PEM或碱性电解槽)将电能转化为氢气,储氢方式包括高压气态储罐、地下盐穴或氨合成前体储存。
- 氢气通过哈伯-博施反应与空分制氮的氮气结合,合成氨气(NH₃),实现能量密度提升(液氨储运仅需-33℃/0.9MPa,较氢气-253℃/70MPa更具经济性)。
- 电解水制氢(PEM或碱性电解槽)将电能转化为氢气,储氢方式包括高压气态储罐、地下盐穴或氨合成前体储存。
- 能量转换与输出层:
- 氨气可直接用于燃料电池发电(如SOFC)、内燃机掺混燃烧,或分解回氢气供燃料电池使用。
- 余热回收系统集成燃气轮机、热电联产装置,提升整体能效。
- 氨气可直接用于燃料电池发电(如SOFC)、内燃机掺混燃烧,或分解回氢气供燃料电池使用。
二、研究现状与优化调度模型
- 多目标优化框架:
- 目标函数:通常以经济性(综合成本最小化)、环保性(碳排放最小化)、可再生能源消纳率(弃风/弃光率降低)为核心目标。
- 约束条件:涵盖设备容量限制、能量平衡、电网交互(峰谷电价响应)、化工反应动力学(如合成氨反应效率与启停时间)。
- 典型算法与应用:
- 混合整数线性规划(MILP) :适用于设备启停决策与离散变量优化,如风光制氢合成氨系统的容量-调度联合优化。
- 深度强化学习(DRL) :处理风光出力不确定性与多时间尺度调度问题,通过智能体探索最优策略,提升系统灵活性。
- 双层优化模型:上层规划设备容量,下层优化运行调度,解决风光-火电-氨储能的协同问题。
- 案例成果:内蒙古风光制氨系统通过MILP优化后,可再生能源利用率提升15%,制氨平准化成本降低31%。
三、关键技术与挑战
- 技术瓶颈:
- 制氨高能耗:传统哈伯-博施法能耗达30-40 GJ/t,需开发低温低压催化剂(如钌基催化剂)与新型电化学合成路径。
- 动态匹配难题:风光出力波动与合成氨设备刚性运行要求的矛盾,需引入柔性调节技术(如储能缓冲、负荷预测)。
- 储运安全与成本:氢气泄漏风险、氨气腐蚀性,以及液氨储罐材料耐压性要求高。
- 解决方案:
- 多能联储互补:构建“电池-氢-氨”混合储能体系,平抑短期波动与长期季节性差异。
- 系统集成优化:通过电转氨(P2A)与碳捕集(CCUS)耦合,实现火电低碳化(掺氨燃烧减碳30%以上)。
- 政策与标准:推动绿氨认证、完善掺氨燃烧排放标准,激励氢氨在交通与工业领域的应用。
四、实际应用与典型案例
- 工业与电力领域:
- 日本碧南电厂:实现燃煤掺氨20%燃烧,目标2030年替代煤电20%。
- 中国内蒙古风光制氨项目:年制绿氨10万吨,通过峰谷电价策略降低电解槽容量需求。
- 日本碧南电厂:实现燃煤掺氨20%燃烧,目标2030年替代煤电20%。
- 交通与船舶燃料:
- 韩国科钦港:氨燃料船舶加注网络与氢燃料电池公交车协同,构建港口零碳能源枢纽。
- 氨分解供氢燃料电池汽车:通过车载氨分解装置实现氢能即产即用,解决加氢站不足问题。
- 韩国科钦港:氨燃料船舶加注网络与氢燃料电池公交车协同,构建港口零碳能源枢纽。
五、未来研究方向
- 绿氨规模化生产:发展百万吨级风光制氢-合成氨一体化基地,降低单位能耗(目标<25 GJ/t)。
- 氨氢协同网络:探索“电-氢-氨-甲醇”多载体转换,提升能源系统灵活性。
- 先进燃烧技术:开发纯氨燃气轮机、低NOx燃烧器,推动氨直接发电商业化。
- 数字化与AI赋能:利用数字孪生技术优化系统实时调度,结合区块链实现绿氨溯源与碳交易。
六、结论
含氢气氨气综合能源系统通过氢氨协同,有效解决了可再生能源波动性大与氢气储运成本高的双重难题。尽管仍面临技术成熟度与经济性挑战,其在电力调峰、工业脱碳与长周期储能中的应用前景广阔。未来需跨学科合作,推动催化剂创新、系统集成优化与政策支持,加速氢氨能源体系的规模化落地。
📚2 运行结果
部分代码:
%燃气轮机建模约束
C=[C, ECHPmin<=ECHP,ECHP<=ECHPmax,
HCHPmin<=HCHP,HCHP<=HCHPmax,
ECHP(2:24)+HCHP(2:24)-ECHP(1:23)-HCHP(1:23)>= ditaEHCHPmin,
ECHP(2:24)+HCHP(2:24)-ECHP(1:23)-HCHP(1:23)<= ditaEHCHPmax,
(m2qCH4*mCH4CHP)/q2e*nHCHP == HCHP,
(m2qCH4*mCH4CHP)/q2e*nECHP == ECHP,
mCH4CHP == v2mCH4*vch4CHP,
mco2CHP == vch42mco2*vch4CHP,
mco2CHP == v2mco2*vco2CHP,
];
%火电机组
C=[C,
EMmin*YEM<=EM,EM<=EMmax*YEM,
ditaEMmin<=EM(2:24)-EM(1:23),EM(2:24)-EM(1:23)<=ditaEMmax,
mEM==0.320*EM-mNH3*18720/23022,%一度电约等于320g标准煤
% mEM==0.2705489*EM+0.011537-mNH3*18720/23022,%
mco2EM == 2.57*mEM, %1 kW·h电折算标准煤0.32 kg,co2排放0.7976kg
mco2EM == v2mco2*vco2EM,
YEMqi(2:24)-YEMting(2:24)==YEM(2:24)-YEM(1:23),
YEMqi(1)==0,
YEMting(1)==0,
mNH3*18720<=0.2*mEM*23022;
mNH3*18720>=0*mEM*23022;
];
%% 平衡约束
C=[C,ECHP+EM+Ewind ==Eload+ENH3 ];
C=[C,HCHP+HNH3 ==Hload ];
C=[C,VGgrid== vch4CHP ];
F = sdpvar(1,1); %总成本
Fth = sdpvar(1,1);
C=[C, Fth== 15e4*sum(YEMqi+YEMting)+PriM*sum(mEM/1000)];
Fcur = sdpvar(1,1); %弃风成本
C=[C, Fcur == 0.6*sum(Ewindcur) ];
Fbuy = sdpvar(1,1); %购气成本
C=[C, Fbuy == PriG*sum(VGgrid) ];
C=[C, F == Fth+Fcur+Fbuy ];
%% 调用cplex求解器求解
% ops=sdpsettings('verbose', 2, 'solver', 'cplex');
ops = sdpsettings('solver', 'cplex+', 'verbose', 2, 'debug', 1);
ops.cplex.MIPGap =0.0001;
ops.cplex.TimeLimit = 200;
ops.cplex.MIPFocus=3;
ops.cplex.Presolve=2;
ops.cplex.DualReductions = 0;
%进行求解计算
result=optimize(C,F,ops);
if result.problem==0
fprintf('求解成功 !!!\n');
else
error('求解出错!请查找错误来源');
end
%% 绘图
%% 电功率平衡图
ECHP=value(ECHP);EM=value(EM);Ewind=value(Ewind);
Eload=value(Eload);ENH3=value(ENH3);
figure
Plot_E_yuan=zeros(3,24);
for t=1:24
Plot_E_yuan(1,t)=ECHP(t)/1000;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]袁文腾,陈亮,王春波,等.基于氨储能技术的电转氨耦合风–光–火综合能源系统双层优化调度[J].中国电机工程学报,2023,43(18):6992-7003.DOI:10.13334/j.0258-8013.pcsee.223152.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取