ICRA和IROS文章质量比RSS差那么多,为何关注度很高?

点击下方卡片,关注「3DCV」公众号
选择星标,干货第一时间送达

编辑:3DCV

添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附行业细分群

扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)最新顶会论文3D视觉最新模组3DGS系列(视频+文档)计算机视觉书籍优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!

33aef2f8019af44124dd9655a4ee408e.jpeg

机器人是很大的领域没错,这里质量问题主要针对视觉,AI相关的分支,不包括软体等机械相关的文章。很多icra/iros的文章完全就是nips/icml/cvpr/iccv的简单复现,不过是摄像机换了个位置(变成机器人视角), 完全没有自己本领域的贡献。并且这两个会录取率平均40%以上,不知道为什么这么多人喜欢追捧这两个会议。目前看来好文章是有,但是小于5%... 而真正的机器人金子会议RSS无论是原创性还是实验严谨度都远高于大多数icra/iros,却少有人提及?

来源:知乎 | 编辑:3DCV
链接:zhihu.com/question/270753790

Michael Jackson

很多icra/iros的文章完全就是nips/icml/cvpr/iccv的简单复现,不过是摄像机换了个位置(变成机器人视角),完全没有自己本领域的贡献。

就离谱,很多CVPR和ICCV的论文不也就是改了个结构涨了0.5个点吗?

摄像机和机器人不要钱不要编程啊?

验证方法在真实环境下的效果,没有意义吗?

并且这两个会录取率平均40%以上,不知道为什么这么多人喜欢追捧这两个会议。

好像是去年CVPR投稿1万篇(根据ID),ICRA只有4000+篇,而且有相当一部分是IEEE RAL期刊录取后在ICRA上接收展示.

所以CVPR接收率低,但是接收的工作数量和ICRA差不多,都是不到2000的亚子

而真正的机器人金子会议RSS无论是原创性还是实验严谨度都远高于大多数icra/iros,却少有人提及?

就离谱,会议是用来交流的,比高大上还是要比期刊.

ICRA就像一个班花,追一追还是能牵手的,热度当然高

而RSS就像校花,基本没有牵手的希望,也就看看,一般人不会追的。

问这种问题的,我感觉大概率是一些深度学习实习生,有一些优越感,认为机器人是传统学科,事实上机器人确实因为不像CV那样可以“站在Github巨人的肩膀上",但是机器人有机器人自身的难点和工作量,不像CV那样纯粹,但是实际遇到的问题很多都是卡脖子问题,没有“数据集上的舞蹈”那么美妙。

丁琰

很多icra/iros的文章完全就是nips/icml/cvpr/iccv的简单复现,不过是摄像机换了个位置(变成机器人视角),完全没有自己本领域的贡献。

在我开始做机器人之前,我也有类似的看法,但后来慢慢改变了想法。要做好一篇机器人的研究需要投入非常多的时间和精力。我那些 AI/CV 出身的现在做robitics的同事,对robotics都非常敬畏,认为搞好机器人研究实在太难了,非常非常难。如果真的所有ICRA/IROS只是简单复现nips/icml/cvpr/iccy, 那我同事的能力岂不是被差辱了么?

目前看来好文章是有,但是小于5%..而真正的机器人金子会议RSS无论是原创性还是实验严谨度都远高于大多数icra/iros,却少有人提及?

这是圈子的问题,RSS 是北美那边搞起来的,大陆参与度比较低。RSS 的录取比例也不是所谓的5%,一般在 20%-30%左右。IROS 和 ICRA 是全球学者共同参与的。举个例子,IROS 和 ICRA 就像是凤凰传奇,RSS 可能更像一个小众的音乐家。自然地,你听到IROS 和 ICRA 的次数会多很多。

游客

RSS肯定是很好的,机器人不能只看录用率,也没人吹捧ICRA,IROS超过RSS,只是说很多人根本不是CV的,CV应该不会超过1/5,我们很多领域:非视觉导航,规划,控制,机械,软体,纳米等等,很多领域,ICRA再往上,也只有更好的RSS(WAFR也可以投)可以投,你们大可以去投CVPR那些CV顶会,非要来鄙视我们这些没地方投的,换你,你愿意。RSS随便一改就是TRO差不多水平的,大家都知道,RSS的圈子太小,普通人根本进不去,难道不让人家聊自己的工作了?矫正下RSS的录用率,因为敢投的人都很少,所以录用率其实也很高:

Acceptance Rate by YearYear

Submissions Accepted  Rate

2017 189 75 39,7%
2016 228 47 20.6%
2015 188 49 26.1%
2014 178 57 32.0%
2013 193 55 30.1%
2012 177 60 33.9%
2011 183 45 24.6%
2010 239 40 16.7%
2009 154 40 26%
2008 163 40 24.5%
2007 137 41 29.9%
2006 95 39 41.1%
2005 179 48 26.8%

张本庸

我就是只关注ICRA和IROS,不怎么看RSS。然而我中的是更水的哈哈。师兄当时有篇IROS,回想起来算法上也不复杂,只不过是在微操作上实现了一下。但是微操作系统,在机电上又有多少坑,那些纯搞算法的可能也不关心了。

去年开始做了和嵌入式相关的,不知道以后这两个会刊还看不看综述和带的视频了。对我个人来讲,之前真的是就想看看各个组目前都做的啥,有什么有意思的没,或许还能借鉴一下。要是有意义,就在跟着看看相关的文章,也不管是啥刊了。这不就是开会的目的吗?

不过话说回来,有的做机器人的这两个会也不跟着看,想找个啥再去知网现搜。不过作为领导能上知网看看也挺好了,比从公众号获取信息再强行指导要好多了,扑街。

匿名用户

不认为RSS有资格鄙视ICRA和IROS,对于这个问题,唯一合理的解释大概是题主不小心中了一篇RSS,觉得自己已经天下无敌了,不鄙视点啥没法表达这种优越感……

首先,会议区别于期刊的主要因素就是“交流”,如果说一个会议只是自己小圈子里的聚会,那么无论门槛好低与否,都很大程度上违背了会议的初衷。这点上ICRA和IROS的影响力与宣传力度就很好的发挥了顶级会议的优势,甚至让圈外人都能有所耳闻,从这点上它们是成功的。

其次,机器人领域的评价体系里:期刊>会议。也就是说,如果一个团队真要是取得了很大的成果,首选一定是期刊,顶级成果冲TRO与IJRR,次顶级成果RAL,AuRo,RAS保平安,如果觉得确实发顶刊有难度,这个时候也考虑下投个会议。所以与其在会议里建立这种无意义的鄙视链,不如再努努力冲篇顶刊吧。

综上,RSS的定位其实蛮尴尬的,首先我承认这个会议的门槛的确有一定高度,但是如果我真的有好的成果,肯定顶刊走起了,弄篇会议太亏了;如果我的成果确实没那么好达不到顶刊,那么试试相对容易些的ICRA、IROS这些促进下交流顺便旅个游也不错,干嘛还投RSS给自己添堵?所以结果就是,无论我的成果是好是坏,好像都不太会考虑RSS这种性价比不高的会议,而且我相信跟我想法一样的一定大有人在,这也就回到了题主的问题,为啥RSS关注度不高,我只能说是有原因的。

本文仅作学术分享,侵权请联系删文!

17cc1983fda0593f6258967e3d21f421.jpeg

03-22
### ICRA会议简介 The **International Conference on Robotics and Automation (ICRA)** 是由 IEEE Robotics and Automation Society 主办的顶级国际学术会议之一,专注于机器人学自动化领域的最新研究成果技术进展[^2]。该会议吸引了来自全球的研究人员、工程师以及行业专家参与,共同探讨前沿技术及其应用。 #### 投稿与录用流程 对于希望向 ICRA 提交论文的研究者而言,通常需要经过严格的同行评审过程。例如,在某次投稿经历中提到,一篇论文于 2023 年 2 月 28 日进入 “Forwarded to publisher” 的状态,这表明稿件已通过初步审查并正式提交至官方平台等待进一步处理。 此外,《IEEE Robotics and Automation Letters》作为补充出版物形式存在,允许作者快速发表短篇高质量文章;而这些作品也可能有机会受邀扩展后参加同期举行的 ICRA 大会展示交流活动。 #### 时间安排及其他重要事项 需要注意的是,不同年度的具体截稿时间可能会有所调整,请务必关注当年发布的官方指南以获取最准确的信息。与此同时,还有其他类似的高水平研讨会可供选择,比如 The 2nd International Conference on Robotics, Automation and Intelligent Control (ICRAIC 2022)[^1], 或者 International Conference on CYBER Technology in Automation, Control and Intelligent Systems [^3] ,它们同样为研究学者提供了良好的分享平台。 ```python # 示例代码:假设我们有一个简单的函数用于计算距离误评估指标 def calculate_distance_error(expected_distances, actual_distances): errors = [] for expected, actual in zip(expected_distances, actual_distances): error = abs(expected - actual) errors.append(error) average_error = sum(errors)/len(errors) return average_error expected = [1.0, 2.0, 3.0] actual = [1.1, 1.9, 3.2] result = calculate_distance_error(expected, actual) print(f"The average distance error is {result:.2f} meters.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值