自动泊车端到端算法 ParkingE2E 介绍

01 算法介绍

自主泊车是智能驾驶领域中的一项关键任务。传统的泊车算法通常使用基于规则的方案来实现。因为算法设计复杂,这些方法在复杂泊车场景中的有效性较低。

相比之下,基于神经网络的方法往往比基于规则的方法更加直观和多功能。通过收集大量专家泊车轨迹数据,基于学习的仿人策略方法,可以有效解决泊车任务。

在本文中,我们采用模仿学习来执行从 RGB 图像到路径规划的端到端规划,模仿人类驾驶轨迹。我们提出的端到端方法利用目标查询编码器来融合图像和目标特征,并使用基于 Transformer 的解码器自回归预测未来的航点。

我们在真实世界场景中进行了广泛的实验,结果表明,我们提出的方法在四个不同的真实车库中平均泊车成功率达到了 87.8%。实车实验进一步验证了本文提出方法的可行性和有效性。

输入:1.去完畸变的 RGB 图 2.目标停车位

输出:路径规划

图片

论文精读博客参考链接:https://blog.csdn.net/qq_45933056/article/details/140968352

源代码:https://github.com/qintonguav/ParkingE2E

02 算法部署后的 demo 效果展示

图片

图片

03 实现过程

3.1 算法整体架构

图片

多视角 RGB 图像被处理,图像特征被转换为 BEV(鸟瞰图)表示形式。使用目标停车位生成 BEV 目标特征,通过目标查询将目

### 端到端 Planning 的概念 端到端规划指的是从原始数据输入直到最终决策输出的一系列过程完全由自动化系统处理的方式。这种方式减少了中间的人工干预,提高了效率和准确性。在自动驾驶领域,端到端规划意味着车辆可以直接根据传感器获取的信息做出驾驶决策而不需要分阶段逐步解析环境信息。 ### 实现方法和技术细节 为了实现高效的端到端规划,在IT领域通常采用深度学习框架来构建神经网络模型。这些模型可以接收来自不同源的数据作为输入,并直接生成用于执行特定任务的动作序列或其他形式的结果。例如,在自动驾驶汽车中,摄像头捕捉的道路图像和其他感知设备收集的数据被送入预训练好的卷积神经网络(CNN),进而得到指导车辆行驶方向的具体指令[^1]。 对于更复杂的多模态应用场景,则可能涉及到融合视觉、雷达等多种类型的传感信息。此时不仅依赖于CNN架构,还需要引入诸如LSTM(Long Short-Term Memory)单元或者其他适合处理时序数据结构的技术组件以增强系统的理解和反应能力。此外,随着任务复杂度增加,如加入更多子任务(比如深度估计、行为预测),则需考虑如何有效集成这些功能模块进入整体解决方案之中[^2]。 具体来说,一种典型的端到端停车方案会接受目标停车位位置及周围环境的RGB影像作为初始条件;接着通过变换至鸟瞰视角(BEV)完成特征提取工作;最后借助Transformer编码器-解码器机制迭代地确定最优路径直至抵达指定地点[^5]。 ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased') def preprocess_input(image_data): # Preprocess the input RGB images to BEV features using CNN or other methods. pass def generate_trajectory(bev_features): # Use Transformer decoder to predict trajectory points autoregressively based on BEV features. inputs = tokenizer(bev_features, return_tensors="pt", padding=True, truncation=True) outputs = model.generate(**inputs) return outputs # Example usage of end-to-end parking function with dummy data bev_feature_example = "dummy_bev_feature" trajectory_points = generate_trajectory(preprocess_input(bev_feature_example)) print(trajectory_points) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值