(9-3)其他路径规划算法:DWA算法

9.3  DWA算法

Dynamic Window Approach(DWA)是一种用于移动机器人路径规划的算法,旨在处理动态环境下的导航问题。DWA算法的优势在于其适应性和实时性,能够在动态环境中灵活规划机器人的路径,以应对不断变化的障碍物和环境条件。

9.3.1  DWA算法介绍

DWA算法通过实时地调整机器人的速度和角速度,使其适应动态环境,具有实时性和适应性的优势,常用于移动机器人的导航和路径规划。

1. 基本概念

  1. 速度空间和角速度空间:DWA算法将机器人的运动空间分为线速度(v)和角速度(ω)两个维度的空间,分别代表机器人在直线和旋转方向上的运动。
  2. 运动窗口(Dynamic Window):机器人在速度空间和角速度空间内存在一个运动窗口,表示可行的速度和角速度组合。该窗口考虑了机器人的物理限制、传感器信息和环境条件。
  3. 评分函数:每个速度和角速度组合都有一个评分,用于量化该组合在当前环境中的适应性。评分通常考虑到目标方向、避障能力、与障碍物的距离等因素。

2. 实现步骤

(1)获取机器人状态和传感器信息:获取机器人当前的位置、速度以及传感器获取的环境信息,如障碍物位置等。

(2)定义速度空间和角速度空间:设置机器人可行的线速度和角速度的范围,形成速度空间和角速度空间。

(3)生成运动窗口:根据机器人的当前状态、速度空间和角速度空间,生成运动窗口,即可行的速度和角速度组合。

(4)评估运动窗口:对于每个速度和角速度组合,使用评分函数进行评估,确定其在当前环境中的适应性。

(5)选择最优运动命令:选择具有最高评分的速度和角速度组合作为机器人下一步的运动命令。

(6)执行运动命令:机器人执行选择的运动命令,更新状态,并进行下一轮的路径规划。

9.3.2  DWA算法实战

下面的实例演示了使用DWA算法实现机器人轨迹规划的过程,机器人通过评估速度和角速度的动态窗口,结合距离目标和避开障碍物的评分机制,在仿真环境中实现了智能的路径规划。DWA算法根据当前状态和环境信息,选择最优速度和角速度指令,以使机器人安全、高效地达到目标终点。

实例9-3:使用DWA算法实现机器人轨迹规划(源码路径:codes\9\DWA.py

实例文件DWA.py的具体实现代码如下所示。

import math
import sys
import numpy as np
import matplotlib.pyplot as plt

# 定义机器人状态
class RobotState:
    def __init__(self, x, y, theta, v, omega):
        self.x = x
        self.y = y
        self.theta = theta
        self.v = v
        self.omega = omega

# 定义障碍物
class Obstacle:
    def __init__(self, x, y):
        self.x = x
        self.y = y

# DWA算法类
class DynamicWindowApproach:
    def __init__(self, max_v, min_v, max_omega, min_omega, v_resolution, omega_resolution, predict_time, goal_distance_weight, obstacle_distance_weight):
        self.max_v = max_v
        self.min_v = min_v
        self.max_omega = max_omega
        self.min_omega = min_omega
        self.v_resolution = v_resolution
        self.omega_resolution = omega_resolution
        self.predict_time = predict_time
        self.goal_distance_weight = goal_distance_weight
        self.obstacle_distance_weight = obstacle_distance_weight

    # 计算机器人轨迹评分
    def calculate_trajectory_score(self, robot, goal, obstacles):
        goal_distance = math.sqrt((robot.x - goal.x) ** 2 + (robot.y - goal.y) ** 2)

        min_obstacle_distance = sys.maxsize
        for obstacle in obstacles:
            obstacle_distance = math.sqrt((robot.x - obstacle.x) ** 2 + (robot.y - obstacle.y) ** 2)
            min_obstacle_distance = min(min_obstacle_distance, obstacle_distance)

        trajectory_score = self.goal_distance_weight * goal_distance + self.obstacle_distance_weight * (1.0 / min_obstacle_distance)
        return trajectory_score

    # 使用DWA算法选择最优轨迹
    def select_best_trajectory(self, robot, goal, obstacles):
        best_score = -sys.maxsize
        best_trajectory = None
        trajectory_points = []

        for v in self.generate_range(self.min_v, self.max_v, self.v_resolution):
            for omega in self.generate_range(self.min_omega, self.max_omega, self.omega_resolution):
                predicted_state = self.predict_next_state(robot, v, omega)

                score = self.calculate_trajectory_score(predicted_state, goal, obstacles)

                if score > best_score:
                    best_score = score
                    best_trajectory = predicted_state

                trajectory_points.append((predicted_state.x, predicted_state.y))

        print(f"Best trajectory: x={best_trajectory.x}, y={best_trajectory.y}, theta={best_trajectory.theta}, v={best_trajectory.v}, omega={best_trajectory.omega}, Score={best_score}")

        # 可视化
        self.plot(robot, goal, obstacles, trajectory_points)

        # 更新机器人状态
        robot.x = best_trajectory.x
        robot.y = best_trajectory.y
        robot.theta = best_trajectory.theta

        # 判断是否到达终点
        if math.sqrt((robot.x - goal.x) ** 2 + (robot.y - goal.y) ** 2) < 0.1:
            print("Robot reached the goal!")
            return True
        else:
            return False

    # 预测下一个状态
    def predict_next_state(self, current_state, v, omega):
        next_state = RobotState(0, 0, 0, 0, 0)
        next_state.x = current_state.x + v * math.cos(current_state.theta) * self.predict_time
        next_state.y = current_state.y + v * math.sin(current_state.theta) * self.predict_time
        next_state.theta = current_state.theta + omega * self.predict_time
        next_state.v = v
        next_state.omega = omega
        return next_state

    # 生成指定范围的值
    def generate_range(self, start, end, step):
        while start <= end:
            yield start
            start += step

    # 可视化
    def plot(self, robot, goal, obstacles, trajectory_points):
        plt.figure()
        plt.scatter(robot.x, robot.y, color='green', label='Robot')
        plt.scatter(goal.x, goal.y, color='red', label='Goal')
        for obstacle in obstacles:
            plt.scatter(obstacle.x, obstacle.y, color='gray', label='Obstacle')
        plt.plot([point[0] for point in trajectory_points], [point[1] for point in trajectory_points], color='blue', label='Best Trajectory')
        plt.xlabel('X')
        plt.ylabel('Y')
        plt.title('Dynamic Window Approach')
        plt.legend()
        plt.grid(True)
        plt.show()

def main():
    # 初始化机器人状态和目标点
    robot = RobotState(0.0, 0.0, 0.0, 0.0, 0.0)
    goal = RobotState(10.0, 10.0, 0.0, 0.0, 0.0)

    # 初始化障碍物
    obstacles = [Obstacle(3.0, 3.0), Obstacle(5.0, 6.0), Obstacle(8.0, 8.0)]

    # 创建DWA算法对象
    dwa = DynamicWindowApproach(1.0, 0.0, 1.0, -1.0, 0.1, 0.1, 1.0, 1.0, 1.0)

    # 使用DWA算法选择最优轨迹并可视化
    reached_goal = False
    while not reached_goal:
        reached_goal = dwa.select_best_trajectory(robot, goal, obstacles)

if __name__ == "__main__":
    main()

在上述代码中,首先定义了机器人状态和障碍物的类,用于表示机器人和环境中的障碍物信息;接着,实现了DWA算法的类,包括初始化参数、计算机器人轨迹评分、选择最优轨迹等方法;然后,在主函数中初始化了机器人、目标点和障碍物,创建了DWA算法对象,并使用循环不断选择最优轨迹直到机器人到达目标点;最后,通过可视化功能展示了机器人、目标点、障碍物和最优轨迹的动态变化过程,如图9-3所示。

图9-3  机器人、目标点、障碍物和最优轨迹的动态变化过程

在本实例中包含如下所示的成员:

  1. RobotState:机器人状态类,包括初始化方法 __init__() 用于设置机器人状态信息。
  2. Obstacle:障碍物类,包括初始化方法 __init__() 用于设置障碍物位置信息。
  3. DynamicWindowApproach:DWA算法类,包括初始化方法 __init__()、计算轨迹评分方法 calculate_trajectory_score()、选择最优轨迹方法 select_best_trajectory()、预测下一个状态方法 predict_next_state()、生成指定范围的值方法 generate_range() 和可视化方法 plot()。
  4. main:主函数,用于初始化机器人、目标点和障碍物,并通过循环选择最优轨迹直到机器人到达目标点。
  • 9
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值