数字图像处理--图像二阶导数的推导

前面我们介绍过了图像的梯度,以及图像的几个梯度算子。

这些本质上都是一阶导数,或一阶微分。就是求图像灰度变化的导数,能够突出图像中的对象边缘。那有一阶导数,有没有二阶导数呢?求导数的导数,这对灰度变化强烈的地方会更敏感。

在微积分中,一维函数的一阶微分的基本定义是这样的:
d f d x = lim ⁡ ϵ → 0 f ( x + ϵ ) − f ( x ) ϵ \frac{df}{dx}=\lim_{\epsilon\rightarrow 0 }{\frac{f(x+\epsilon )-f(x)}{\epsilon }} dxdf=ϵ0limϵf(x+ϵ)f(x)

那么,二阶微分的基本定义就是这样的:
d 2 f d x 2 = lim ⁡ ϵ → 0 f ′ ( x + ϵ ) − f ′ ( x ) ϵ \frac{d^2f}{dx^2}=\lim_{\epsilon\rightarrow 0 }{\frac{f'(x+\epsilon )-f'(x)}{\epsilon }} dx2d2f=ϵ0limϵf(x+ϵ)f(x)

而图像是一个二维函数f(x,y),其二阶微分当然就是二阶偏微分。但为推导简单起见,我们先按x方向的一维函数来推导:
∂ f ∂ x = lim ⁡ ϵ → 0 f ( x + ϵ ) − f ( x ) ϵ \frac{\partial f}{\partial x}=\lim_{\epsilon\rightarrow 0 }{\frac{f(x+\epsilon )-f(x)}{\epsilon }} xf=ϵ0limϵf(x+ϵ)f(x)

图像是按照像素来离散的,最小的 ϵ ϵ ϵ就是1像素。因此有:
∂ f ∂ x = f ′ ( x ) = f ( x + 1 ) − f ( x ) \frac{\partial f}{\partial x}=f'(x)=f(x+1)-f(x) xf=f(x)=f(x+1)f(x)

那么二阶微分就是:
∂ 2 f ∂ x 2 = ∂ f ′ ( x ) d x 2 = f ′ ( x + 1 ) − f ′ ( x ) \frac{\partial^2f}{\partial x ^2}=\frac{\partial f'(x)}{dx^2}=f'(x+1)-f'(x) x22f=dx2f(x)=f(x+1)f(x)

根据上面的一阶微分,则:
∂ 2 f ∂ x 2 = ∂ f ′ ( x ) d x 2 = f ′ ( x + 1 ) − f ′ ( x ) = f ( ( x + 1 ) + 1 ) − f ( ( x + 1 ) ) − ( f ( x + 1 ) − f ( x ) ) = f ( x + 2 ) − f ( x + 1 ) − f ( x + 1 ) + f ( x ) = f ( x + 2 ) − 2 f ( x + 1 ) + f ( x ) \begin{aligned} \frac{\partial^2f}{\partial x ^2}&=\frac{\partial f'(x)}{dx^2}=f'(x+1)-f'(x) \\ &=f((x+1)+1)-f((x+1))-(f(x+1)-f(x)) \\ &=f(x+2)-f(x+1)-f(x+1)+f(x) \\ &=f(x+2)-2f(x+1)+f(x) \\ \end{aligned} x22f=dx2f(x)=f(x+1)f(x)=f((x+1)+1)f((x+1))(f(x+1)f(x))=f(x+2)f(x+1)f(x+1)+f(x)=f(x+2)2f(x+1)+f(x)

x = x − 1 x=x-1 x=x1,则:
∂ 2 f ∂ x 2 = f ( x + 1 ) + f ( x − 1 ) − 2 f ( x ) \frac{\partial^2f}{\partial x ^2}=f(x+1)+f(x-1)-2f(x) x22f=f(x+1)+f(x1)2f(x)

于是,在x和y方向上,有:
∂ 2 f ∂ x 2 = f ( x + 1 , y ) + f ( x − 1 , y ) − 2 f ( x , y ) \frac{\partial^2f}{\partial x ^2}=f(x+1,y)+f(x-1,y)-2f(x,y) x22f=f(x+1,y)+f(x1,y)2f(x,y)
∂ 2 f ∂ y 2 = f ( x , y + 1 ) + f ( x , y − 1 ) − 2 f ( x , y ) \frac{\partial^2f}{\partial y ^2}=f(x,y+1)+f(x,y-1)-2f(x,y) y22f=f(x,y+1)+f(x,y1)2f(x,y)

我们把x方向和y方向的二阶导数结合在一起:

∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 = f ( x + 1 , y ) + f ( x − 1 , y ) + f ( x , y + 1 ) + f ( x , y − 1 ) − 4 f ( x , y ) \frac{\partial^2f}{\partial x ^2}+\frac{\partial^2f}{\partial y ^2}=f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x,y-1)-4f(x,y) x22f+y22f=f(x+1,y)+f(x1,y)+f(x,y+1)+f(x,y1)4f(x,y)
这实质上就是著名的拉普拉斯二阶微分算子(Laplacian)。我们看一下实际效果。

import cv2
import numpy as np

moon = cv2.imread("moon.tif", 0)
row, column = moon.shape
moon_f = np.copy(moon)
moon_f = moon_f.astype("float")

two = np.zeros((row, column))

for x in range(1, row - 1):
    for y in range(1, column - 1):
        two[x, y] = moon_f[x + 1, y] \
                    + moon_f[x - 1, y] \
                    + moon_f[x, y + 1] \
                    + moon_f[x, y - 1] \
                    - 4 * moon_f[x, y]

sharp = moon_f - two
sharp = np.where(sharp < 0, 0, np.where(sharp > 255, 255, sharp))
sharp = sharp.astype("uint8")

cv2.imshow("moon", moon)
cv2.imshow("sharp", sharp)
cv2.waitKey()

输出结果:

在这里插入图片描述
我们可以看到,图像增强的效果比前几篇文章介绍的一阶微分要好很多。

需要注意,将原图像与拉普拉斯二阶导数图像合并的时候,必须考虑符号上的差别。注意上面的代码中用的是减号,而不是一阶导数中用的加号。到底用加号还是减号,与中心点 f ( x , y ) f(x,y) f(x,y)的系数有关,这个定义的拉普拉斯二阶导数中, f ( x , y ) f(x,y) f(x,y)的系数是-4,是负的,原图像就要减去拉普拉斯二阶导数图像;拉普拉斯二阶导数还有其它的形式,例如:
L a p l a c i a n = 4 f ( x , y ) − f ( x + 1 , y ) − f ( x − 1 , y ) − f ( x , y + 1 ) − f ( x , y − 1 ) Laplacian = 4f(x,y)-f(x+1,y)-f(x-1,y)-f(x,y+1)-f(x,y-1) Laplacian=4f(x,y)f(x+1,y)f(x1,y)f(x,y+1)f(x,y1)

这时 f ( x , y ) f(x,y) f(x,y)的系数是正的,原图像就要加上拉普拉斯二阶导数图像。

到这里,我们已经注意到,前面介绍图像一阶导数时,用的是绝对值,而二阶导数就没有使用绝对值,且需要考虑系数的正负符号问题,才能决定最后的图像合并是用原图像加上还是减去二阶导数图像,为什么是这样?这个下一篇再探讨。

转载自:https://blog.csdn.net/saltriver/article/details/78990520

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值