为什么高斯分布概率密度函数的积分等于1

一维高斯分布的概率密度如下:

N ( x ∣ μ , σ 2 ) = 1 ( 2 π σ 2 ) 1 / 2 e x p { − 1 2 σ 2 ( x − μ ) 2 } ( 1 ) N(x \mid\mu ,\sigma^2)=\frac{1}{(2\pi\sigma^2)^{1/2}}exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\} (1) N(xμ,σ2)=(2πσ2)1/21exp{2σ21(xμ)2}1

现在要证明为什么式(1)的积分为1,这也是PRML的exercise 1.7:

∫ − ∞ ∞ N ( x ∣ μ , σ 2 ) d x = 1 \int^{\infty}_{-\infty}N(x \mid\mu,\sigma^2)dx=1 N(xμ,σ2)dx=1

证明比较巧妙,采用的是化为二重积分的形式并把笛卡尔坐标转换成极坐标。

首先把 I = ∫ − ∞ ∞ e x p ( − 1 2 σ 2 x 2 ) d x \displaystyle I=\int^{\infty}_{-\infty}exp(-\frac{1}{2\sigma^2}x^2)dx I=exp(2σ21x2)dx 化为二重积分的形式:

I 2 = ∫ − ∞ ∞ ∫ − ∞ ∞ e x p ( − 1 2 σ 2 x 2 − 1 2 σ 2 y 2 ) d x d y I^2 =\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}exp(-\frac{1}{2\sigma^2}x^2-\frac{1}{2\sigma^2}y^2)dxdy I2=exp(2σ21x22σ21y2)dxdy

把笛卡尔坐标转换成极坐标:

x = r c o s θ , y = r s i n θ x = rcos\theta, y = rsin\theta x=rcosθ,y=rsinθ

雅可比行列式如下,关于雅可比行列式参考我的另一篇文章:

∂ ( x , y ) ∂ ( r , θ ) = ∣ ∂ x ∂ r ∂ x ∂ θ ∂ y ∂ r ∂ y ∂ θ ∣ = ∣ c o s θ − r s i n θ s i n θ r c o s θ ∣ = r \frac{\partial(x,y)}{\partial(r,\theta)}= \left| \begin{array}{cc} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial\theta}\\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial\theta} \end{array}\right|= \left| \begin{array}{cc} cos\theta & -rsin\theta\\ sin\theta & rcos\theta \end{array}\right|=r (r,θ)(x,y)=rxryθxθy=cosθsinθrsinθrcosθ=r

因此二重积分变为:

I 2 = ∫ 0 + ∞ ∫ 0 2 π e x p ( − r 2 c o s 2 θ + r 2 s i n 2 θ 2 σ 2 ) r d r d θ = 2 π ∫ 0 + ∞ e x p ( − r 2 2 σ 2 ) 1 2 d ( r 2 ) = − 2 π σ 2 ∫ 0 + ∞ e x p ( − r 2 2 σ 2 ) d ( − r 2 2 σ 2 ) = − 2 π σ 2 [ e x p ( z ) ] 0 − ∞ = 2 π σ 2 \begin{aligned} I^2 &= \int^{+\infty}_{0}\int^{2\pi}_{0}exp(-\frac{r^2cos^2\theta + r^2sin^2\theta}{2\sigma^2})rdrd\theta\\ & = 2 \pi\int^{+\infty}_{0} exp(-\frac{r^2}{2\sigma^2})\frac{1}{2}d(r^2)\\ &=-2\pi\sigma^2\int^{+\infty}_{0}exp(-\frac{r^2}{2\sigma^2})d(-\frac{r^2}{2\sigma^2})\\ &= -2\pi\sigma^2 [exp(z)]^{-\infty}_{0}\\ &= 2 \pi\sigma^2 \end{aligned} I2=0+02πexp(2σ2r2cos2θ+r2sin2θ)rdrdθ=2π0+exp(2σ2r2)21d(r2)=2πσ20+exp(2σ2r2)d(2σ2r2)=2πσ2[exp(z)]0=2πσ2

其中 z = − r 2 2 σ 2 \displaystyle z=-\frac{r^2}{2\sigma^2} z=2σ2r2 ,因此:

I = ( 2 π σ 2 ) 1 / 2 I=(2 \pi\sigma^2)^{1/2} I=(2πσ2)1/2

最后,令 y = x − μ y = x − \mu y=xμ ,高斯分布概率密度函数的积分为:

∫ − ∞ ∞ N ( x ∣ μ , σ 2 ) d x = ∫ − ∞ ∞ 1 ( 2 π σ 2 ) 1 / 2 e x p { − 1 2 σ 2 ( x − μ ) 2 } d x = ∫ − ∞ ∞ 1 ( 2 π σ 2 ) 1 / 2 e x p { − y 2 2 σ 2 } d y = ( 2 π σ 2 ) − 1 / 2 ⋅ I = 1 \begin{aligned}\int^{\infty}_{-\infty}N(x \mid\mu,\sigma^2)dx &= \int^{\infty}_{-\infty}\frac{1}{(2\pi\sigma^2)^{1/2}}exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\}dx \\ &= \int^{\infty}_{-\infty}\frac{1}{(2\pi\sigma^2)^{1/2}}exp\{-\frac{y^2}{2\sigma^2}\}dy \\ &= (2\pi\sigma^2)^{-1/2}\cdot I\\ &=1 \end{aligned} N(xμ,σ2)dx=(2πσ2)1/21exp{2σ21(xμ)2}dx=(2πσ2)1/21exp{2σ2y2}dy=(2πσ2)1/2I=1

参考资料:
[1] PRML

转载自:
博主:清雅的机器学习笔记
博文地址:https://zhuanlan.zhihu.com/p/40225646
来源:知乎

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值