证明Ax=0的最小二乘解是ATA的最小特征值对应的特征向量(||x||=1)

证明: 当 ||x||=1时,Ax=0的最小二乘解是 A T A A^TA ATA的最小特征值对应的特征向量

证:上式等同于证明如下命题: A T A A^TA ATA的最小特征值所对应的特征向量可使||Ax||最小。
(1) 若x为 A T A A^TA ATA的特征向量,则
A T A x = λ x A^TAx=\lambda x ATAx=λx
可得
∣ ∣ A x ∣ ∣ = ( A x ) T ( A x ) = x T A T A x = x T λ x = x T x λ = λ \begin{aligned} ||Ax|| & =(Ax)^T(Ax) \\ &=x^TA^TAx \\ &=x^T\lambda x\\ &=x^Tx\lambda \\ &=\lambda \end{aligned} Ax=(Ax)T(Ax)=xTATAx=xTλx=xTxλ=λ

由上式可见,取 A T A A^TA ATA的最小特征值 λ \lambda λ可使 ∣ ∣ A x ∣ ∣ ||Ax|| Ax最小。

(2)若 x x x不为 A T A A^TA ATA的特征向量,则可对 A A A做SVD分解,得

A = U Λ V T A=U \Lambda V^T A=UΛVT


∣ ∣ A x ∣ ∣ = ( A x ) T ( A x ) = x T A T A x = x T V Λ T U T U Λ V T x = x T V Λ T Λ V T x \begin{aligned} ||Ax||&=(Ax)^T(Ax)=x^TA^TAx\\ &=x^TV\Lambda^TU^TU\Lambda V^Tx\\ &=x^TV\Lambda^T\Lambda V^Tx \end{aligned} Ax=(Ax)T(Ax)=xTATAx=xTVΛTUTUΛVTx=xTVΛTΛVTx

又因为
Λ T Λ = [ λ 1 2 λ 2 2 ⋯ λ n 2 ] \Lambda^T\Lambda=\begin{bmatrix} \lambda_1^2 &&& \\ & \lambda_2^2&&& \\ &&\cdots&&\\ &&&\lambda_n^2&\\ \end{bmatrix} ΛTΛ=λ12λ22λn2

且在svd分解中 V V V为一组n维的正交基,即
V = [ v 1 v 2 ⋯ v n ] V=\begin{bmatrix}v_1& v_2& \cdots &v_n\end{bmatrix} V=[v1v2vn]

因此,n维向量x可用该组基来表示:
x = α 1 v 1 + α 2 v 2 + ⋯ + α n v n = [ v 1 v 2 ⋯ v n ] [ α 1 α 2 ⋯ α n ] \begin{aligned} x&=\alpha_1v_1+\alpha_2v_2+\cdots+\alpha_nv_n &=\begin{bmatrix} v_1 & v_2 &\cdots & v_n \end{bmatrix}\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \cdots\\ \alpha_n \end{bmatrix} \end{aligned} x=α1v1+α2v2++αnvn=[v1v2vn]α1α2αn

将上述两个式子代入,可得
∣ ∣ A x ∣ ∣ = x T V Λ T Λ V T x = [ α 1 α 2 ⋯ α n ] [ v 1 v 2 ⋯ v n ] [ v 1 v 2 ⋯ v n ] [ λ 1 2 λ 2 2 ⋯ λ n 2 ] [ v 1 v 2 ⋯ v n ] [ v 1 v 2 ⋯ v n ] [ α 1 α 2 ⋯ α n ] = [ α 1 α 2 ⋯ α n ] [ λ 1 2 λ 2 2 ⋯ λ n 2 ] [ α 1 α 2 ⋯ α n ] = α 1 2 λ 1 2 + α 2 2 λ 2 2 + ⋯ + α n 2 λ n 2 \begin{aligned} ||Ax||&=x^TV\Lambda^T\Lambda V^Tx \\ &=\begin{bmatrix} \alpha_1&\alpha_2&\cdots&\alpha_n \end{bmatrix} \begin{bmatrix} v_1\\ v_2\\ \cdots\\ v_n \end{bmatrix} \begin{bmatrix} v_1&v_2&\cdots&v_n \end{bmatrix} \begin{bmatrix} \lambda_1^2 && \\ & \lambda_2^2&& \\ &&\cdots&\\ &&&\lambda_n^2\\ \end{bmatrix}\\ &\begin{bmatrix} v_1\\ v_2\\ \cdots\\ v_n \end{bmatrix} \begin{bmatrix} v_1&v_2&\cdots&v_n \end{bmatrix} \begin{bmatrix} \alpha_1\\ \alpha_2\\ \cdots\\ \alpha_n\\ \end{bmatrix}\\ &=\begin{bmatrix} \alpha_1&\alpha_2&\cdots&\alpha_n \end{bmatrix} \begin{bmatrix} \lambda_1^2 && \\ & \lambda_2^2&& \\ &&\cdots&\\ &&&\lambda_n^2\\ \end{bmatrix} \begin{bmatrix} \alpha_1\\ \alpha_2\\ \cdots\\ \alpha_n\\ \end{bmatrix}\\ &=\alpha_1^2\lambda_1^2+\alpha_2^2\lambda_2^2+\cdots+\alpha_n^2\lambda_n^2 \end{aligned} Ax=xTVΛTΛVTx=[α1α2αn]v1v2vn[v1v2vn]λ12λ22λn2v1v2vn[v1v2vn]α1α2αn=[α1α2αn]λ12λ22λn2α1α2αn=α12λ12+α22λ22++αn2λn2

不是一般性,可令 λ 1 ⋯ λ N \lambda_1\cdots\lambda_N λ1λN的降序排列,则
α 1 2 λ 1 2 + α 2 2 λ 2 2 + ⋯ + α n 2 λ n 2 ≥ λ N 2 ( α 1 2 + α 2 2 + ⋯ + α n 2 ) \alpha_1^2\lambda_1^2+\alpha_2^2\lambda_2^2+\cdots+\alpha_n^2\lambda_n^2 \geq \lambda_N^2(\alpha_1^2+\alpha_2^2+\cdots+\alpha_n^2) α12λ12+α22λ22++αn2λn2λN2(α12+α22++αn2)

因为 ∣ ∣ x ∣ ∣ = 1 ||x||=1 x1,因此
( α 1 2 + α 2 2 + ⋯ + α n 2 ) = 1 (\alpha_1^2+\alpha_2^2+\cdots+\alpha_n^2)=1 (α12+α22++αn2)=1
所以
∣ ∣ A x ∣ ∣ ≥ λ N 2 ( α 1 2 + α 2 2 + ⋯ + α n 2 ) ||Ax||\geq \lambda_N^2(\alpha_1^2+\alpha_2^2+\cdots+\alpha_n^2) AxλN2(α12+α22++αn2)

因此,取 A T A A^TA ATA的最小特征值 λ \lambda λ可使 ∣ ∣ A x ∣ ∣ ||Ax|| Ax最小

综上,取ATA的最小特征值对应的特征向量可使Ax=0得到最优解,命题得证。

参考自:
博主:emilycs09
博文地址:https://blog.csdn.net/emilycs09/article/details/84929192
来源:CSDN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值