研究背景
单一组学数据分析通常用来解释某种特征性的生化指标与某些疾病之间的关联,但无法说明其中复杂的因果关系。从疾病表型或某种生物现象出发,寻找影响疾病发生发展的关键因子或通路,借助高通量的技术手段,设置相应的患者组和健康组,通过转录组、蛋白质组或代谢组学分析,筛选差异表达基因、蛋白或差异代谢物。通过一系列的关联分析,如表达量相关性分析、表达量聚类分析、GO和KEGG富集分析等,筛选发生变化的关键通路与靶点。再针对这些通路或靶点,通过一系列的分子机制研究、功能验证等,对下游的调控网络进行研究,找到关键的调控机制。
通过多组学大数据整合分析,人们可以对疾病的发生发展过程有更好的理解,而这一点也会帮助人们提出更好的预防或干预手段。
接下来跟大家分享几篇多组学在疾病发生发展中的研究案例!
案例一
文章主题:ChIP-seq及ATAC-seq联合分析助力肝细胞癌转移机制及治疗策略的研究
发表期刊:Journal of Hepatology
影响因子:25.7
使用技术:ChIP-seq+ATAC-seq
研究背景
肝细胞癌(HCC)是导致癌症相关死亡的第三大原因。由于肝功能障碍或存在转移,许多患者失去了手术的机会,因此抗肿瘤药物治疗是晚期肝癌患者的首选治疗方式。
目前,治疗晚期肝癌的主要药物是多激酶