单细胞专题(2) | 亚群细化分析并寻找感兴趣的小亚群

文章介绍了单细胞转录组分析中的细胞亚群细化过程,包括如何使用R包Seurat进行数据处理和聚类,以及如何根据细胞比例变化进行个性化分析。通过实例展示了如何识别并进一步划分细胞亚群,如巨噬细胞的M1和M2表型,并利用特征基因进行细胞功能注释和可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       通常情况下,单细胞转录组拿到亚群后会进行更细致的分群,或者看不同样本不同组别的内部的细胞亚群的比例变化。

       这就是个性化分析阶段,这个阶段取决于自己的单细胞转录组项目课题设计情况,我们了解到的各式各样的分析点,并不是通用的。比如如果要比较细胞亚群比例,就必须要有多个样本,如果是单个样本,其分析的内容及方法也会不尽相同,类似的问题以及涉及到的分析很多。

       今天小编带大家来学习下“单细胞个性化分析之细胞亚群继续分群”,相信大多数单细胞转录组的小伙伴都能用到。

细胞亚群进一步划分原则

       理论上细胞亚群是可以无限划分的,因为世界上没有两个一模一样的细胞,关键是要把握一个度,什么样的差异可以判定为不同细胞亚群,什么样的差异是可以容忍的细胞类群内部异质性。有一个策略就是找出主要因素和次要因素。主要因素划分为主要亚群,比如外周血里面的T,B细胞当然是不同亚群,但是T细胞里面还可以继续划分:CD4或者CD8的T细胞,甚至继续划分, 如下图所示:

亚群细化分析实操 

       加载R包

{
library(Seurat)
library(dplyr)
library(reticulate)
library(sctransform)
library(cowplot)
library(ggplot2)
library(viridis)
library(tidyr)
library(magrittr)
library(reshape2)
library(readxl)
library(stringr)
library(cowplot)
library(scales)
library(readr)
library(progeny)
library(gplots)
library(tibble)
library(grid)
library(rlang)

theme_set(theme_cowplot())
use_colors <- c(
  Alveolar_Macrophages = "#6bAEd6",
  `Monocyte-derived macrophages`= "#fff500",
  Monocytes= "#FA9FB5",
  `Myeloid dendritic cells`= "#DD3497",
  Plasmacytoid_dendritic_c
### 下载TCGA数据进行TNBC TME单细胞分析 为了从癌症基因组图谱(The Cancer Genome Atlas, TCGA)获取三阴性乳腺癌(Triple-Negative Breast Cancer, TNBC)的相关数据以进行肿瘤微环境(Tumor Microenvironment, TME)的单细胞分析,以下是具体的方法和工具: #### 数据源的选择 TCGA本身不直接提供单细胞RNA测序(scRNA-seq)数据[^2]。然而,可以通过其批量RNA测序(bulk RNA-seq)数据间接推断TME中的细胞组成及其功能特性。这些数据通常存储在Genomic Data Commons (GDC) 数据门户中。 #### 获取Bulk RNA-Seq数据 1. **访问GDC门户网站** 访问 GDC 数据门户网站(https://portal.gdc.cancer.gov/),这是官方发布的TCGA数据的主要入口。 2. **筛选项目和样本类型** 使用过滤器选择特定的癌症研究计划——“Breast Invasive Carcinoma (BRCA)”作为主要目标。进一步缩小范围至TNBC患者体,这可能需要额外的临床元数据分析来确认患者的分子分型。 3. **下载流程** - 注册账户通过身份验证登录到平台; - 构建查询条件:指定文件类型为`Gene Expression Quantification`或者原始FASTQ序列读取文件; - 提交请求等待批准后即可获得压缩包形式的大规模转录组测量结果; #### 转化与处理技术 由于缺乏真实的单细胞分辨率信息,在后续阶段需依赖专门设计好的算法模型实现去卷积操作从而估计各类免疫浸润水平比例关系。例如CIBERSORTx能够基于已知标记基因表达模式重建复杂组织内部各成分相对丰度分布情况[^1]。 此外还有其他多种可供选择的技术方案如MuSiC、quanTIseq等均具备相似的功能定位但各自侧重点有所不同因此实际应用过程中应综合考量实验目的需求以及资源消耗等因素做出合理决策。 ```python import pandas as pd from sklearn.decomposition import NMF def estimate_cell_proportions(gene_expression_matrix): """ Estimate cell type proportions using Non-negative Matrix Factorization. Parameters: gene_expression_matrix (pd.DataFrame): A DataFrame where rows are genes and columns represent samples. Returns: pd.DataFrame: Estimated cell proportion matrix with cells on the index and samples as columns. """ model = NMF(n_components=6, init='random', random_state=0) W = model.fit_transform(gene_expression_matrix.T.values) H = model.components_ estimated_proportions = pd.DataFrame(W, index=gene_expression_matrix.columns, columns=["CellType_" + str(i+1) for i in range(H.shape[0])]) return estimated_proportions ``` 上述代码片段展示了一个简单的非负矩阵分解(NMF)方法用于估算不同样品间的潜在细胞构成比率的一个例子。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值