成功案例|单细胞与空间转录组学:解锁前列腺癌微环境密码

文章信息

图片

发表期刊:Nature Communications

影响因子:14.7

研究背景

前列腺癌是男性常见的恶性肿瘤,尽管局部肿瘤预后较好,但转移性疾病的高死亡率及治疗抵抗仍是重大挑战。基因组与转录组研究已揭示了癌细胞的内在异常,但对肿瘤微环境(TME)的动态作用仍知之甚少。TME通过细胞间相互作用参与肿瘤进展、治疗响应和转移,但传统单细胞RNA测序(scRNA-seq)缺乏空间信息,难以解析TME的复杂空间组织。

本文聚焦于前列腺癌中一类特殊上皮细胞——club-like细胞。这类细胞最初在肺部被发现,近期研究表明其在前列腺外周区及炎症区域富集,且转录特征与小鼠去势抵抗性前列腺癌的管腔祖细胞相似。研究团队整合了120例患者的单细胞和空间转录组数据,覆盖良性增生、初治肿瘤、新辅助治疗后肿瘤及去势抵抗性前列腺癌(CRPC),系统解析了TME的时空动态变化。

技术路线

图片

研究结论

本研究通过对单细胞和空间转录组学整合分析,揭示Club-like细胞作为前列腺癌肿瘤微环境(TME)的关键上皮亚型,其富集区域表现出雄激素信号耗竭、管腔祖细胞标记上调及衰老相关分泌表型(SASP),并通过高表达中性粒细胞趋化因子(如 CXCL1/2/8)显著促进多形核髓源抑制细胞(PMN-MDSC)浸润,形成免疫抑制微环境。该细胞亚群对雄激素剥夺治疗(ADT)具有耐药性,其介导的 PMN-MDSC 活性在原发及转移性肿瘤中均与免疫抑制密切相关,且通过配体 - 受体相互作用(如 CXCL2-ACKR1、CCL20-CCR6)与周围细胞通讯。该研究首次系统揭示了Club-like细胞通过协调免疫抑制性微环境驱动前列腺癌治疗抵抗的机制,为靶向TME的精准治疗(如联合免疫疗法与ADT)奠定了理论基础,同时提供了可转化的生物标志物和干预靶点。

图片

图1、单细胞映射衍生区域(SCM 区域)与组织病理学特征相符,并且反映了基因表达随治疗变化的情况。

图片

图2、在原发性和转移性肿瘤中,club-like细胞衰老与免疫抑制性多形核髓源抑制细胞(PMN-MDSC)的活性相关

基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的生和需要项目实战练习的习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足习、使用需求,如果有需要的话可以放心下载使用。 基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分毕业设计项目)基于SSMMySQL的医院预约挂号系统源码及数据库(高分
### 空间转录组单细胞测序的技术特点 #### 单细胞测序技术概述 单细胞测序是一种能够解析个体细胞之间差异的强大工具,其核心在于捕捉单个细胞内的分子特征。相比于传统的批量测序(bulk RNA-seq),它能更好地揭示细胞间的异质性[^3]。具体来说,单细胞转录组测序(scRNA-seq)通过分离并分析单一细胞的mRNA表达谱来实现这一点。 #### 空间转录组的核心价值 空间转录组则进一步扩展了单细胞测序的能力,不仅提供了基因表达的信息,还保留了这些表达模式在组织中的物理位置。这种能力对于理解复杂的组织结构及其功能至关重要[^4]。例如,在肿瘤微环境中,特定类型的免疫细胞可能聚集于某些区域,而空间转录组可以精确定位这些分布特性[^1]。 --- ### 常见技术平台比较 | 技术名称 | 特点 | |------------------|------------------------------------------------------------------------------------------| | **10x Genomics** | 提供高通量解决方案,支持大规模实验设计;适用于多种样品类型 | | | - scRNA-seq:捕获大量单细胞的数据 | | | - Visium Spatial Gene Expression:专注于整个切片上的空间分辨率 | 上述两种方案均被广泛应用,并且随着硬件改进和技术优化不断进步[^5]。 --- ### 数据处理生物信息分析流程 针对这两种数据集的计算框架通常分为以下几个方面: 1. **质量控制 (QC)** 初步筛选去除低质量读取片段以及背景噪音干扰项。 2. **标准化 Normalization** 使用log transformation或其他统计模型调整原始计数值以便后续建模操作更加稳健可靠. 3. **降维 Dimensionality Reduction & Clustering** 应用PCA, t-SNE 或 UMAP 方法降低维度后聚类发现潜在的新颖亚型群体. 4. **标记基因鉴定 Marker Identification** 找到区分各个cluster的关键因素即所谓markers genes用于解释生物意义. 5. **可视化 Visualization** 结果呈现形式多样包括散点图热力图等等直观展示重要趋势变化规律. 6. **高级分析 Advanced Analysis** 如轨迹推断(Trajectory Inference), 细胞通讯(Cell Communication)预测等深入挖掘隐藏机制.[^2] 以下是Python代码示例演示如何利用Scanpy库完成部分基础步骤: ```python import scanpy as sc adata = sc.read_10x_h5('filtered_gene_bc_matrices.h5') # 加载数据 sc.pp.filter_cells(adata, min_genes=200) # 过滤掉不合格单元格 sc.pp.normalize_total(adata, target_sum=1e4) # 总数归一化至每万条reads sc.pp.log1p(adata) # 取自然对数变换改善动态范围表现 sc.tl.pca(adata,n_comps=50) # PCA分解提取主要成分向量表示原矩阵近似情况 sc.pl.pca_variance_ratio(adata) # 展现各主轴贡献度比例曲线图表辅助判断最佳选取数目 ``` --- ### 实际案例分享 一篇发表的研究展示了结合多组手段探索心脏病理过程的成功范例。其中提到运用snRNA-seq加scATAC-seq再加上Visium Space Transcriptome三重验证最终锁定了调控心肌纤维分化的重要因子RUNX1作为治疗靶点之一。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值