slam笔记 triangulation.cpp粗解

需要注意的是代码自定义的triangulation函数,输入中
已知:两幅图片中的特征点keypoint_1、keypoint_2以及他们的配对matches、转换R、t
未知:特征点的具体位置(在第一个相机坐标中的坐标)

在函数中调用了 opencv函数 cv::triangulatePoints(T1, T2, pts_1, pts_2, pts_4d);
通过函数简介可知,该函数用于双目相机,通过T1、T2间的运动求特征点在世界坐标系的坐标,在此处令T1=E,使第一个相机坐标系为世界坐标系,求出来的pts_4d就是在相机一中的坐标,pts_4d的第四维为特征点深度

void triangulation(
  const vector<KeyPoint> &keypoint_1,
  const vector<KeyPoint> &keypoint_2,
  const std::vector<DMatch> &matches,
  const Mat &R, const Mat &t,
  vector<Point3d> &points) {
/*---------T1=E,使相机1坐标系为世界坐标系-------*/
  Mat T1 = (Mat_<float>(3, 4) <<
    1, 0, 0, 0,
    0, 1, 0, 0,
    0, 0, 1, 0);
  Mat T2 = (Mat_<float>(3, 4) <<
    R.at<double>(0, 0), R.at<double>(0, 1), R.at<double>(0, 2), t.at<double>(0, 0),
    R.at<double>(1, 0), R.at<double>(1, 1), R.at<double>(1, 2), t.at<double>(1, 0),
    R.at<double>(2, 0), R.at<double>(2, 1), R.at<double>(2, 2), t.at<double>(2, 0)
  );

  Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
  vector<Point2f> pts_1, pts_2;
  for (DMatch m:matches) {
    // 将像素坐标转换至相机坐标
    pts_1.push_back(pixel2cam(keypoint_1[m.queryIdx].pt, K));
    pts_2.push_back(pixel2cam(keypoint_2[m.trainIdx].pt, K));
  }

  Mat pts_4d;
  cv::triangulatePoints(T1, T2, pts_1, pts_2, pts_4d);

  // 转换成非齐次坐标
  for (int i = 0; i < pts_4d.cols; i++) {
    Mat x = pts_4d.col(i);
    x /= x.at<float>(3, 0); // 归一化
    Point3d p(
      x.at<float>(0, 0),
      x.at<float>(1, 0),
      x.at<float>(2, 0)
    );
    points.push_back(p);
  }
}

此外,在主函数中调用triangulation函数时,直接用对极约束求得的归一化R,t(||t||=1)当作真实的R,t,求得的是该R、t下的相机深度。在实际运用的时候应该是给定确定的R、t来求深度的


int main(int argc, char **argv) {
  if (argc != 3) {
    cout << "usage: triangulation img1 img2" << endl;
    return 1;
  }
  //-- 读取图像
  Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
  Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);

  vector<KeyPoint> keypoints_1, keypoints_2;
  vector<DMatch> matches;
  find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
  cout << "一共找到了" << matches.size() << "组匹配点" << endl;

  //-- 估计两张图像间运动
  Mat R, t;
  pose_estimation_2d2d(keypoints_1, keypoints_2, matches, R, t);

  //-- 三角化
  vector<Point3d> points;
  /*-------------------此处R、t为对极约束所求归一化R、t---------------------------*/
  triangulation(keypoints_1, keypoints_2, matches, R, t, points);

  //-- 验证三角化点与特征点的重投影关系
  Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
  Mat img1_plot = img_1.clone();
  Mat img2_plot = img_2.clone();
  for (int i = 0; i < matches.size(); i++) {
    // 第一个图
    float depth1 = points[i].z;
    cout << "depth: " << depth1 << endl;
    Point2d pt1_cam = pixel2cam(keypoints_1[matches[i].queryIdx].pt, K);
    cv::circle(img1_plot, keypoints_1[matches[i].queryIdx].pt, 2, get_color(depth1), 2);

    // 第二个图
    Mat pt2_trans = R * (Mat_<double>(3, 1) << points[i].x, points[i].y, points[i].z) + t;
    float depth2 = pt2_trans.at<double>(2, 0);
    cv::circle(img2_plot, keypoints_2[matches[i].trainIdx].pt, 2, get_color(depth2), 2);
  }
  cv::imshow("img 1", img1_plot);
  cv::imshow("img 2", img2_plot);
  cv::waitKey();

  return 0;
}

《视觉SLAM十四讲》中提到的ORB(Oriented FAST and Rotated BRIEF)是一种高效的特征检测和描述符匹配算法,常用于计算机视觉中的结构光标定、定位以及实时地图构建等场景。 Orb_CV.cpp 是一个典型的使用 ORB 算法的 C++ 示例代码片段,它通常会包含以下几个步骤: 1. **初始化**:首先导入必要的库,如 OpenCV 和它的非深度学习版本。 ```cpp #include <opencv2/features2d.hpp> #include <opencv2/calib3d.hpp> #include <opencv2/highgui.hpp> ``` 2. **图像读取**:加载待处理的图像。 ```cpp cv::Mat img = cv::imread("image.jpg", cv::IMREAD_GRAYSCALE); ``` 3. **ORB 特征检测和描述**:创建 ORB 检测器对象,并提取关键点及其描述符。 ```cpp cv::ORB orb; std::vector<cv::KeyPoint> keypoints; cv::Mat descriptors; orb.detectAndCompute(img, std::noArray(), keypoints, descriptors); ``` 4. **匹配描述符**:如果有多张图片,可以使用BFMatcher 对两个图像的描述符进行匹配。 ```cpp cv::BruteForceMatcher<ORBDesc> bfmatcher; std::vector<std::pair<cv::Point2f, cv::Point2f>> matches; bfmatcher.match(descriptors, otherDescriptors, matches); ``` 5. **结果可视化**:将关键点和匹配显示在原始图像上。 ```cpp cv::drawKeypoints(img, keypoints, img, Scalar(0), cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); cv::imshow("ORB Matches", img); cv::waitKey(); ``` 6. **保存匹配数据**:有时可能会保存这些关键点和匹配信息以便后续处理。 注意,这只是一个简化的示例,实际应用中可能会包括更复杂的数据结构管理和错误检查。完整的 `Orb_CV.cpp` 文件应包含了更多的细节,例如循环处理多帧图像,以及处理匹配的质量筛选等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值