读论文《OmniGen: Unified Image Generation》

OmniGen演示了在单一框架内执行各种图像生成任务的能力。此外,它还具有推理能力和语境学习能力。

论文地址:2409.11340v1 (arxiv.org)

项目地址:GitHub - VectorSpaceLab/OmniGen

项目目前还不完整,论文展现的通用性十分强大,就是不知道稳定性怎么样。

摘要

        大型语言模型 (LLM) 的出现统一了语言生成任务,并彻底改变了人机交互。然而,在图像生成领域,能够在单个框架内处理各种任务的统一模型在很大程度上仍未得到探索。在这项工作中,我们介绍了 OmniGen,这是一种用于统一图像生成的新扩散模型。与流行的扩散模型(例如 Stable Diffusion)不同,OmniGen 不再需要 ControlNet 或 IP 适配器等额外模块来处理各种控制条件。OmniGen 具有以下特点:1) 统一:OmniGen 不仅展示了文本到图像的生成功能,而且本身也支持各种下游任务,例如图像编辑、主题驱动生成和视觉条件生成。此外,OmniGen 可以通过将经典的计算机视觉任务转换为图像生成任务(例如边缘检测和人体姿势识别)来处理这些任务。2) 简单性:OmniGen 的架构高度简化,无需额外的文本编码器。此外,与现有的扩散模型相比,它更加用户友好,能够通过指令完成复杂的任务,而无需额外的预处理步骤(例如,人体姿态估计)并花费大量成本,从而显著简化了图像生成的工作流程。3) 知识转移:受益于统一格式的学习,OmniGen 可以有效地在不同任务之间传递知识,管理看不见的任务和领域,并展示出新颖的能力。我们还探讨了该模型的推理能力和思维链机制的潜在应用。

  1. 统一:不仅可以文本生成图
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

请站在我身后

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值