基于神经元PID控制的异常脑节律抑制理论概述

文章探讨了单神经元PID控制器在电刺激治疗中的应用,介绍了单神经群模型和耦合神经群模型,以及如何通过单神经元自适应PID控制算法改进PID控制性能,特别关注了无监督Hebb学习规则在参数调整中的作用。
摘要由CSDN通过智能技术生成

目录

1. 单神经群模型

2.耦合神经群模型

3.PID 控制算法

3.1单神经元自适应 PID 控制算法

3.2 无监督 Hebb 学习规则


       单神经元PID控制器完美符合电刺激治疗的需求,它在PID控制器的基础上引入单神经元模型的神经元,主要是利用其自学习、自适应的能力来实现PID增益的自调整。缩短了抑制系统达到稳态的时间。然而,电刺激治疗的原理机制仍然是模糊的,这导致在刺激参数(如电压)以及有效刺激目标等重要因素的选择上产生了困难。

1. 单神经群模型

      单个神经群的神经动力学模型如图所示,该模型由两个相互作用的神经元群落组成:锥体细胞(中间绿色方块),局部的兴奋性(上部红色方块)和抑制性(下部蓝色方块)中间神经元。其中,每一个群落代表了一簇神经元的集合。为来自邻近或更远的输入影响,并由高斯白噪声模拟;(是来自群落中锥体细胞的输出信号;和为来自局部中间神经元的兴奋性反馈信号和抑制性反馈信号;常量至用来表示子群间的相互作用以及平均突触连接数;表示神经动力学模型的输出,在生理学方面解释为EEG信号。本文将通过改变神经动力学模型的重要参数来分析异常EEG信号的产生机理。

       神经群模型是一种集总参数模型,可以模拟真实的脑电信号,它借助于兴奋性和抑制性细胞相互作用来产生神经振荡。图2给出了单个神经群模型的框图,由两部分构成,虚线框外的表示非锥体细胞(星型细胞、蓝细胞等),记为子群1,它仅接受兴奋性输入。虚线框内的表示锥体细胞记为子群2,锥体细胞主要接受来自星型细胞或蓝细胞的兴奋性或抑制性反馈。

      子群1通过两个线性传递函数和分别将动作电位的平均脉冲密度转变为突触后膜兴奋性电压和抑制性电压。

2.耦合神经群模型

       大脑是由相互作用的神经群落组成的,通常用多个神经群耦合的模型来进行模拟,这里需要引进两个参数来描述它们之间的作用强度和不同脑区之间信息传输时存在的时间延迟问题。这里用耦合强度M来表示神经群之间的作用强度,在单个神经群模型的基础上,引入一个脉冲响应来模拟群落1的延迟,定义如下:

神经群l的框图如下:

3.PID 控制算法

       比例-积分-微分(Proportional-Integral-Derivative,PID)控制的出现早于经典控制理论与现代控制理论,其最早出现于1922年,是一种应用在自动控制系统中的有效控制方法。作为最流行、最常见的工业控制器之一,PID控制的流行及广泛传播主要归功于它的简易及有效的性能特性。如今PID控制已应用于实际控制系统中,涉及工艺条件规则及飞机、船舶动力学等。PID控制通过几十年的成功应用证明了其可靠性,这使得PID控制获得控制工程师的广泛认可,进而使得PID控制成为控制策略中十分重要的工具。在PID控制的线性形式中存在着许多问题,如增益调节问题、在噪声及干扰下不稳定的问题、无法有效适应非线性系统的非线性特性以及不适合控制时变系统等问题,这导致在操作条件及环境参数条件变化下的高性能控制需求超过了线性PID控制的能力。但由于PID控制在简易及有效性上的优势,使得它仍然作为超过90%工业应用的选择。

      线性形式的PID控制方程如下:

      在PID控制器中,将来源于期望输出减去真实输出的误差作为输入,然后基于误差使用比例、积分、微分增益来产生控制输出U。

      PID控制律中每一项都有其物理意义,并且各自影响着控制输出。比例增益代表一种驱动力量,小增益值用于小误差,大增益值用于大误差。但是,大增益值会导致过度调节以及系统性能中不希望出现的稳态误差。为消除比例增益及其他原因导致的稳态误差问题,积分项被引入。但积分项的存在会引起饱和问题以及影响系统稳定性。因此,通常在瞬态响应期间消除积分项以阻止过度调节、饱和以及不稳定的问题。控制器微分项则用来预测未来控制误差,从而确保控制器减小输出以避免过度调节。具体来说,其功能类似于阻尼器,通过误差值的大小来给定一个合适的阻尼值。

      在PID控制的线性形式中存在着许多问题,如增益调节问题、在噪声及干扰下不稳定的问题、无法有效适应非线性系统的非线性特性以及不适合控制时变系统等问题,这导致在操作条件及环境参数条件变化下的高性能控制需求超过了线性PID控制的能力。但由于PID控制在简易及有效性上的优势,使得它仍然作为超过90%工业应用的选择。

      为了克服线性PID控制的缺陷,研究员和工程师运用各种各样的修改方案来调节PID控制器,比如增益时序安排表、模糊控制等。当他们的工作应用在工业控制技术问题上时,研究者发现非线性控制通常可以使得系统性能得到改善,并且在处理系统变化问题上更加灵活。这主要是由于非线性特性为PID增益调节提供了更多的可调性。

3.1单神经元自适应 PID 控制算法

     PID作为成型早、结构简洁、应用性强的控制策略,广泛适用于工程应用。相对于其他控制策略,其优势体现在控制结构简洁、受控对象模型精确性要求低、控制效果较好,尤其是对低阶的线性非时变系统,其控制过程甚至可以实现参数最优化。但是,通常控制对象是非线性且时变的系统,而我们面对的神经动力学模型是高非线性时变系统。面对这种情况,PID 控制性能将会受到极大限制,其性能会受到严重破坏。为了继承 PID 控制的优点,同时改善PID控制的性能,这里将引入单神经元自适应PID控制。单神经元模型在并行机制、自学习、自适应、记忆等功能上具有优势,主要用来处理优化等问题。将其与PID控制相结合,可以使得PID控制器具有参数在线调整的性能,从而为改善PID控制性能及扩展PID控制应用领域提供新的可能。

      基于增量式PID控制结构,融入单神经元模型形成单神经元自适应PID控制算法,使其具有自学习、自适应的功能,从而实现参数自调整的目的,单神经元自适应PID 控制结构如图所示。

       其中,该系统将运用有监督的Hebb学习规则来调整Kp,Ki,Kd,从而使得单神经元自适应PID控制系统具有自学习、自适应的功能。因此,得到单神经元自适应PID控制的方程如下:

3.2 无监督 Hebb 学习规则

无监督 Hebb 学习规则的方程如下所示:

       与前两种学习规则比较,可以看出该学习规则是前两种学习规则的结合。主要运用第三种学习规则形成单神经元自适应PID控制系统。该系统是在普通PID控制变形后的增量式PID控制结构下形成的,增量PID控制算法为:

       K为比例系数且K > 0,K主要影响快速性,K过小会使得快速性变差,K增大会使系统快速性变好,但超调量过大会导致系统不稳定,当被控目标时延增加时,需要通过较小的K来保证系统稳定。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值