基于非平稳学习回报最大化的强化学习理论研究

目录

1.强化学习基础

2.非平稳环境下的强化学习

3. 非平稳环境下的价值函数估计

4. MATLAB程序

5. 仿真结论


       在许多现实世界的任务中,环境的特性并不是固定不变的,而是随着时间的推移而发生变化。例如,在金融市场中,价格的波动性和市场趋势会随时间而变化;在交通管理系统中,车辆流量和交通灯的配时策略也会随时间而调整;在用户推荐系统中,用户的兴趣偏好可能会随时间而改变。因此,对于智能体来说,能够在非平稳环境中学习并适应这些变化是非常重要的能力。

      基于非平稳学习回报最大化的强化学习理论研究旨在解决环境特性随时间变化时智能体如何通过与环境的交互来学习最优策略,以达到长期回报最大化的问题。非平稳环境是指那些随着时间推移,环境的状态或动态特性会发生变化的情形。在这种情况下,基于马尔科夫决策过程的强化学习方法可能不再适用,因为它们通常假设环境是静态的或至少是马尔科夫的。

1.强化学习基础

       强化学习的核心概念是马尔科夫决策过程(Markov Decision Process, MDP),它由状态空间 S、动作空间A、转移概率P、即时奖励函数R 和折扣因子γ 构成。

       策略与价值函数如下:

2.非平稳环境下的强化学习

       在非平稳环境中,转移概率P 和即时奖励函数R 都可能随时间变化。这导致传统的MDP模型不再完全适用,需要引入新的方法来处理这种变化。

针对非平稳环境的强化学习方法通常包括以下几种策略:

在线学习:持续地收集新数据,并根据新数据更新策略和价值函数。

      在线学习算法通过实时更新策略和价值函数来适应环境的变化。一个典型的在线学习算法是Q-learning,它可以被扩展为适应非平稳环境。Q-learning更新规则如下:

滑动窗口法:只考虑最近一段时间的数据,忽略旧数据的影响。

贝叶斯方法:使用贝叶斯推理来更新对环境的信念,从而适应环境的变化。

       贝叶斯方法通过维护对环境参数的后验分布来适应环境的变化。具体而言,可以使用贝叶斯定理来更新对环境参数的信念:

自适应学习率:根据环境变化的快慢来调整学习率。

       为了更好地适应非平稳环境,可以使用自适应学习率的方法。一种可能的方法是根据环境变化的频率来调整学习率:

3. 非平稳环境下的价值函数估计

       在非平稳环境中,价值函数的估计变得更加复杂,因为环境的状态转移和奖励函数都可能随时间变化。一种可能的方法是使用动态贝叶斯网络(Dynamic Bayesian Networks, DBNs)来建模环境的动态特性,并据此更新价值函数。

       DBN是一种图形模型,可以表示随时间变化的变量之间的依赖关系。在DBN中,每个时间步的状态St​ 和动作At​ 都是随机变量,转移概率P(St+1​∣St​,At​) 和即时奖励Rt​ 也可以随时间变化。

4. MATLAB程序

..........................................................................
% 全局变量定义,储存机的均值和最优动作
global banditmeans banditoptima
% 构建机均值矩阵,行代表不同的机,列代表不同动作
banditmeans = randn(N, A);
% 找出每行的最大值索引,即每个机的最优动作
[~, banditoptima] = max(banditmeans, [], 2);

% 分别尝试以下几种算法
% 使用ε贪心策略,ε=0.1
eg_01 = make_epsilon_greedy(0.1);

% ε较小意味着更倾向于利用而非探索
eg_001 = make_epsilon_greedy(0.01);

% 使用Softmax策略,温度参数τ=0.3
smax = make_softmax(0.3);

% 强化学习比较算法(待完成:编写说明!)
rc_01_01 = make_reinforcement_compare(0.1, 0.1);

% 追逐策略
purs = make_pursuit(0.01);

% 不同算法的对比
compare_bandits(T, [], 'ε=0.1', eg_01, ...
                        'ε=0.01', eg_001, ...
                        'Softmax τ=0.3', smax, ...
                        '比较 α=0.1, β=0.1', rc_01_01, ...
                        '追逐 β=0.01', purs);

% 对比强化学习比较算法的不同参数设置
rc_001_001 = make_reinforcement_compare(0.01, 0.01);
rc_01_001 = make_reinforcement_compare(0.1, 0.01);
rc_001_01 = make_reinforcement_compare(0.01, 0.1);

compare_bandits(4000, '强化学习比较参数', ...
                        'α=0.01, β=0.01', rc_001_001, ...
                        'α=0.1, β=0.01', rc_01_001, ...
                        'α=0.001, β=0.1', rc_001_01);

unadj = make_reinforcement_compare(0.1, 0.1, -5); % 未经调整的概率
adj_001 = make_reinforcement_compare_adjusted_prob(0.1, 0.1, 0.01, -5); % 调整γ=0.01
adj_01 = make_reinforcement_compare_adjusted_prob(0.1, 0.1, 0.1, -5); % 重复定义,实际应调整变量名

compare_bandits(T, '概率调整;初始参考=-5', ...
                    '未调整', unadj, ...
                    '调整 γ=0.01', adj_001, ...
                    '调整 γ=0.1', adj_01);

% 对于高初始奖励调整概率
unadj = make_reinforcement_compare(0.1, 0.1, 5);
adj = make_reinforcement_compare_adjusted_prob(0.1, 0.1, 0.1, 5);

compare_bandits(T, '概率调整;初始参考=5', ...
                    '未调整', unadj, ...
                    '调整 γ=0.1', adj);
up4113

5. 仿真结论

       基于非平稳学习回报最大化的强化学习理论研究是一个重要的研究方向,尤其是在那些环境特性随时间变化的应用场景中。通过引入在线学习、自适应学习率和贝叶斯方法等策略,智能体可以在非平稳环境中学习到适应性强的策略,从而实现长期回报的最大化。

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值