ros的navigation之———move_base(导航框架)

前言

前文已经讲过gmapping构建地图和amcl自定位了,下面就可以将这些整合到move_base中正式开启导航模式了~

move_base简介

move_base节点其实相当于ros navigation整体框架的一个指挥官,它统筹了各个navigation节点发过来的信息:
这里写图片描述
下面我介绍一下我了解的节点:

laser and odom

正如gmapping和amcl一样,laser和odometry信息依然是要作为输入的。当然这里增加了一个pointcloud点云信息可以去做障碍物检测,不过博主并没有用过~~

map_server

这个节点是用来读入生成好的地图的~一般gmapping生成的一个.pgm的地图直接使用map_server读进去就可以了。

costmap

这个节点困扰了我好久,其中local_costmap一直都没有数据。后来才发现是障碍物高度范围的参数设的太小,调大之后终于成功了。costmap我理解就是在原来的地图基础上,结合一些膨胀(使原地图更胖)和sensor(我的是laser)的数据,形成一个新的地图,然后在这个地图上进行路径规划。这里global costmap是不动的,只是基于读入的地图,而local costmap是实时更新的,根据你的激光数据,它可以帮你躲避新出现在地图中的障碍物。

planner

进行路径规划的节点。

base_control

输出规划好的速度,可以直接订阅然后下发给你的机器人。不过我的cmd_vel主题老是会输出0的速度,所以大家根据情况可以对速度进行一些限制和优化。

我的launch文件

<?xml version="1.0"?>
<launch>

  <node pkg="beginner_tutorials" type="talker" name="talker"/>

  <node pkg="map_server" type="map_server" name="map_server" args="/home/nj/laser_map/map3.yaml"/>

  <!-- amcl node -->
  <node pkg="amcl" type="amcl" name="amcl" output="screen">

          <remap from="scan" to="scan"/>
          <!-- Publish scans from best pose at a max of 10 Hz -->
          <param name="use_map_topic" value="true"/>
          <param name="odom_model_type" value="omni"/>
          <param name="odom_alpha5" value="0.1"/>
          <param name="transform_tolerance" value="0.5" />
          <param name="gui_publish_rate" value="10.0"/>
          <param name="laser_max_beams" value="100"/>
          <param name="min_particles" value="500"/>
          <param name="max_particles" value="2000"/>
          <param name="kld_err" value="0.1"/>
          <param name="kld_z" value="0.99"/>
          <param name="odom_alpha1" value="0.1"/>
          <param name="odom_alpha2" value="0.1"/>
          <!-- translation std dev, m -->
          <param name="odom_alpha3" value="0.1"/>
          <param name="odom_alpha4" value="0.1"/>
          <param name="laser_z_hit" value="0.9"/>
          <param name="laser_z_short" value="0.05"/>
          <param name="laser_z_max" value="0.05"/>
          <param name="laser_z_rand" value="0.5"/>
          <param name="laser_sigma_hit" value="0.2"/>
          <param name="laser_lambda_short" value="0.1"/>
          <param name="laser_lambda_short" value="0.1"/>
          <param name="laser_model_type" value="likelihood_field"/>
          <!-- <param name="laser_model_type" value="beam"/> -->
          <param name="laser_min_range" value="1"/>
          <param name="laser_max_range" value="5"/>
          <param name="laser_likelihood_max_dist" value="4.0"/>
          <param name="update_min_d" value="0.2"/>
          <param name="update_min_a" value="0.5"/>
          <param name="resample_interval" value="1"/>
          <param name="transform_tolerance" value="0.1"/>
          <param name="recovery_alpha_slow" value="0.0"/>
          <param name="recovery_alpha_fast" value="0.0"/>


          <param name="initial_pose_x" value="3"/>
          <param name="initial_pose_y" value="-1"/>
          <param name="initial_pose_a" value="0"/>
          <param name="initial_cov_xx" value="15"/>
          <param name="initial_cov_aa" value="15"/>
          <param name="initial_cov_yy" value="15"/>



  </node>
  <node pkg="move_base" type="move_base" name="move_base" output="screen">
    <rosparam file="/home/nj/laser_map/costmap_common_params.yaml" command="load" ns="global_costmap" />
        <rosparam file="/home/nj/laser_map/costmap_common_params.yaml" command="load" ns="local_costmap" />
        <rosparam file="/home/nj/laser_map/local_costmap_params.yaml" command="load" />
        <rosparam file="/home/nj/laser_map/global_costmap_params.yaml" command="load" />
        <rosparam file="/home/nj/laser_map/dwa_local_planner_params.yaml" command="load" />
  </node>
</launch>

我的talker节点是激光节点,大家可以吧这个节点换成自己的激光节点。
我这里对move_base设置参数使用了yaml文件,因为参数太多了写到一个launch会死的~~
我已经传到github上了,这些文件链接:github,当然大家需要改一下路径~

重要参数(2015 12 25增补)

我把我觉得重要的参数都给大家列举一下:

costmap_common_params.yaml

基本的重要参数都在这个参数表里
1. obstacle_range:决定了多远的距离以内被当成是障碍显示在local costmap里面
2. footprint: 通过设置坐标来决定了你小车的形状,也可以设置radius,小车就是圆形。
3. inflation_radius:costmap的膨胀半径~很重要~
4. observation_sources:用来设置你输入的障碍物检测方法:可以是激光和点云
5. max_obstacle_height: , min_obstacle_height: ,障碍物的高度范围,我就是这个范围设的太小开始local map并没有显示出来。

我的结果图

在rviz中显示出的效果
这里写图片描述
白色方块就是local costmap了,而原地图旁边的各种颜色就是对地图的膨胀,这个参数都是可以在yaml文件里设置的。
ros costmap,这个链接就是ros介绍costmap的参数如何设定大家也可以找到。

<think>好的,我现在需要帮助用户解决如何在ROS2中实现和自定义move_base节点的问题。首先,我要回忆一下用户提供的引用内容,这些引用都是关于ROS1中的move_base的,但用户问的是ROS2,所以我得注意两者的区别。 首先,用户提到的引用[1]到[4]都是关于ROS1的move_base,比如move_base包的结构、全局和局部规划器的集成、成本地图以及参数配置工具如rqt_reconfigure。但ROS2中的导航框架已经发生了变化,从move_base变成了Nav2,所以需要明确告诉用户这一点。 接下来,我需要组织回答的结构。用户的问题分为两部分:实现和自定义。实现部分需要指导用户如何安装Nav2包,配置必要的文件如launch文件和参数文件。自定义部分则需要涉及规划器、控制器、恢复行为等的定制,以及成本地图的调整。 需要注意ROS2和ROS1的不同之处,比如Nav2使用生命周期节点,参数文件的结构可能不同,以及新的工具如Nav2 Bringup。同时,用户可能对如何替换全局规划器或局部控制器感兴趣,所以需要给出具体的代码示例或步骤,比如创建新的插件并注册到ROS2系统中。 另外,用户提供的引用中提到move_base连接全局和局部规划器,维护成本地图,这些在ROS2的Nav2中也是核心概念,但实现方式有所不同。比如,Nav2使用插件机制,允许更灵活地替换组件。需要强调Nav2的模块化设计,并说明如何利用这种设计进行自定义。 还要考虑用户可能遇到的问题,比如参数配置错误,插件加载失败,或者启动文件配置不当。在回答中可以给出一些常见问题及解决方法,帮助用户避免常见陷阱。 最后,按照用户的要求,生成相关问题,这些问题应该围绕Nav2的进阶使用,比如性能优化、仿真测试、与SLAM的集成等,确保问题具有实际应用价值,并引导用户进一步探索。</think>### ROS2中move_base节点的实现与自定义指南 ROS2中导航功能通过Nav2框架实现(对应ROS1的move_base),采用模块化架构和生命周期节点管理[^3]。以下是具体实现步骤和自定义方法: #### 一、Nav2基础实现 1. **安装Nav2包** ```bash sudo apt install ros-<distro>-navigation2 ros-<distro>-nav2-bringup ``` 2. **创建启动文件** ```xml <!-- nav2_bringup/launch/navigation_launch.py --> from launch import LaunchDescription from launch_ros.actions import Node def generate_launch_description(): return LaunchDescription([ Node( package='nav2_controller', executable='controller_server', output='screen'), Node( package='nav2_planner', executable='planner_server', output='screen'), # 其他必要节点 ]) ``` 3. **配置参数文件** ```yaml # nav2_params.yaml controller_server: ros__parameters: progress_checker_plugin: "progress_checker" goal_checker_plugin: "goal_checker" ``` #### 二、核心自定义方法 1. **自定义规划器(继承nav2_core接口)** ```cpp #include "nav2_core/global_planner.hpp" class CustomPlanner : public nav2_core::GlobalPlanner { public: void configure(rclcpp_lifecycle::LifecycleNode::SharedPtr parent) override; void activate() override; void deactivate() override; void createPlan( const geometry_msgs::msg::PoseStamped & start, const geometry_msgs::msg::PoseStamped & goal, nav_msgs::msg::Path & plan) override; }; ``` 2. **注册插件** ```xml <!-- custom_plugins.xml --> <library path="custom_nav_plugins"> <class type="custom_nav_plugins::CustomPlanner" base_class_type="nav2_core::GlobalPlanner"> </class> </library> ``` #### 三、关键配置项 1. **组件映射配置** ```yaml planner_server: ros__parameters: planner_plugins: ["GridBased"] GridBased: plugin: "nav2_navfn_planner/NavfnPlanner" ``` 2. **成本地图配置(多层传感器融合)** ```yaml global_costmap: ros__parameters: plugins: ["static_layer", "obstacle_layer"] obstacle_layer: observation_sources: "scan" scan: {data_type: "LaserScan", topic: "/scan"} ``` #### 四、调试与优化 1. **使用RQT动态调参** ```bash ros2 run rqt_reconfigure rqt_reconfigure ``` 2. **可视化调试工具** ```bash ros2 launch nav2_bringup rviz_launch.py ``` [^3]: ROS2的Nav2框架采用生命周期节点管理机制,相比ROS1的move_base具有更好的状态控制能力,支持热插拔组件。 [^4]: 参数配置继承ROS1的优化方案,但采用YAML格式进行结构化配置,支持多级参数嵌套。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值