13. 线性动态电路的复频域分析

1. 拉普拉斯变换

1.1 拉普拉斯变换概念

  • ( 0 , ∞ ) (0,\infty) (0,)上的函数 f ( t ) f(t) f(t),其拉氏变换和拉氏反变换为:
    • 拉式正变换,知道 f ( t ) f(t) f(t),求其 F ( s ) F(s) F(s) F ( s ) = ∫ 0 − ∞ f ( t ) e − s t d t F(s)=\int_{0_-}^{\infty}f(t)e^{-st}dt F(s)=0f(t)estdt其中 s = σ + j w s=\sigma+jw s=σ+jw为复数,称为复频率。

    • 拉式反变换,知道 F ( s ) F(s) F(s),求其 f ( t ) f(t) f(t) f ( t ) = 1 2 π j ∫ σ − j w σ + j w F ( s ) e s t d s f(t)=\frac{1}{2\pi j}\int_{\sigma-jw}^{\sigma+jw}F(s)e^{st}ds f(t)=2πj1σjwσ+jwF(s)estds

    • 符号简写 :

      • 象函数 F ( s ) = £ [ f ( t ) ] F(s)=\text{\pounds}[f(t)] F(s)=£[f(t)],如 U ( s ) 、 I ( s ) U(s)、I(s) U(s)I(s)
      • 原函数 f ( t ) = £ − 1 [ F ( s ) ] f(t)=\text{\pounds}^{-1}[F(s)] f(t)=£1[F(s)],如 u ( t ) 、 i ( t ) u(t)、i(t) u(t)i(t)
  • 傅里叶变换与拉式变换的区别
    • 傅里叶变换 F ( w ) = ∫ − ∞ + ∞ f ( t ) e j w t d t F(w)=\int_{-\infty}^{+\infty}f(t)e^{jwt}dt F(w)=+f(t)ejwtdt 这个是频域
    • 对于一个不收敛的函数,没有办法傅里叶变换,这时候,做拉式变换就相当于乘一个衰减因子,只要衰减因子足够大,能令函数收敛,从而做傅里叶变换。傅里叶变换为拉式变换的一个特例,即 σ = 0 \sigma=0 σ=0
    • 不是所有的函数都可以做拉式变换的。
  • 小注
    • U ( s ) 、 I ( s ) U(s)、I(s) U(s)I(s) → 复频域、或S域
    • 区分 U ˙ 、 I ˙ \dot{U}、\dot{I} U˙I˙,这个代表向量。
    • 拉式变换从 0 − 0_{-} 0开始的,而傅里叶变换是 − ∞ -\infty + ∞ +\infty +,做拉式变换,令 f ( t ) ≡ 0 , t < 0 f(t)\equiv0,t<0 f(t)0,t<0,为了分析0时刻,因此从 0 − 0_{-} 0开始。
  • 几种典型函数S域形式
    ε ( t ) → 1 s \varepsilon(t) → \frac{1}{s} ε(t)s1 a → a s a→\frac{a}{s} asa δ ( t ) → 1 \delta (t)→1 δ(t)1 e a t → 1 s − a e^{at}→\frac{1}{s-a} eatsa1 s i n w t → w s 2 + w 2 sinwt → \frac{w}{s^2+w^2} sinwts2+w2w c o s w t → s s 2 + w 2 coswt → \frac{s}{s^2+w^2} coswts2+w2s t → 1 s 2 t→\frac{1}{s^2} ts21

1.2 拉式变换性质

  • 线性性质

    • 若给出 f 1 ( t ) → £ F 1 ( s ) 、 f 2 ( t ) → £ F 2 ( s ) f_1(t)\overset{\text{\pounds}}{\rightarrow} F_1(s)、f_2(t)\overset{\text{\pounds}}{\rightarrow} F_2(s) f1(t)£F1(s)f2(t)£F2(s)则有 a f 1 ( t ) + b f 2 ( t ) → a F 1 ( s ) + b F 2 ( s ) af_1(t)+bf_2(t) →aF_1(s)+bF_2(s) af1(t)+bf2(t)aF1(s)+bF2(s)
    • 例,给出 f ( t ) = 3 ( 1 − e − 2 t ) , t > 0 f(t)=3(1-e^{-2t}),t>0 f(t)=3(1e2t),t>0,求 F ( s ) F(s) F(s) F ( s ) = £ [ f ( t ) ] = 3 s − 3 s + 2 F(s)=\text{\pounds}[f(t)]=\frac{3}{s}-\frac{3}{s+2} F(s)=£[f(t)]=s3s+23
  • 微分性质

    • f ( t ) → £ F ( s ) f(t)\overset{\text{\pounds}}{\rightarrow} F(s) f(t)£F(s) d f ( t ) d t → £ s F ( s ) − f ( 0 − ) \frac{df(t)}{dt}\overset{\text{\pounds}}{\rightarrow} sF(s)-f(0_{-}) dtdf(t)£sF(s)f(0)
    • 例电容 i C i_C iC u C u_C uC的关系: i C = C d u C d t → £ I C ( s ) = s C U C ( s ) − C u C ( 0 − ) i_C=C\frac{du_C}{dt}\overset{\text{\pounds}}{\rightarrow} I_C(s)=sCU_C(s)-Cu_{C}(0_-) iC=CdtduC£IC(s)=sCUC(s)CuC(0) s C sC sC为运算导纳。
    • 例电感 u L u_L uL i L i_L iL的关系: u L = L d i L d t → £ U L ( s ) = s L I L ( s ) − L i L ( 0 − ) u_L=L\frac{di_L}{dt}\overset{\text{\pounds}}{\rightarrow} U_L(s)=sLI_L(s)-Li_{L}(0_-) uL=LdtdiL£UL(s)=sLIL(s)LiL(0) s l sl sl为运算阻抗。
    • ε ( t ) → £ 1 s \varepsilon(t)\overset{\text{\pounds}}{\rightarrow}\frac{1}{s} ε(t)£s1 d ε ( t ) d t → £ s ∗ 1 s − ε ( 0 − 0 ) = 1 = δ ( t ) \frac{d\varepsilon(t)}{dt}\overset{\text{\pounds}}{\rightarrow}s*\frac{1}{s}-\varepsilon(0_-0) = 1 =\delta(t) dtdε(t)£ss1ε(00)=1=δ(t)
  • 积分性质
    £ [ ∫ 0 t f ( t ) d t ] = F ( s ) s \text{\pounds}[\int_{0}^{t}f(t)dt]=\frac{F(s)}{s} £[0tf(t)dt]=sF(s)

  • 时域位移(延时)

    • £ [ f ( t ) ε ( t ) ] = F ( s ) \text{\pounds}[f(t)\varepsilon(t)]=F(s) £[f(t)ε(t)]=F(s) £ [ f ( t − t 0 ) ε ( t − t 0 ) ] = e − s t 0 F ( s ) \text{\pounds}[f(t-t_0)\varepsilon(t-t_0)]=e^{-st_{0}}F(s) £[f(tt0)ε(tt0)]=est0F(s)
  • 复频域位移(衰减)

    • f ( t ) → £ F ( s ) f(t)\overset{\text{\pounds}}{\rightarrow} F(s) f(t)£F(s) e − a t f ( t ) → £ F ( s + a ) e^{-at}f(t) \overset{\text{\pounds}}{\rightarrow}F(s+a) eatf(t)£F(s+a)
    • s i n w t → £ w s 2 + w 2 sinwt \overset{\text{\pounds}}{\rightarrow} \frac{w}{s^2+w^2} sinwt£s2+w2w e − a t s i n w t → £ w ( s + a ) 2 + w 2 e^{-at}sinwt \overset{\text{\pounds}}{\rightarrow} \frac{w}{(s+a)^2+w^2} eatsinwt£(s+a)2+w2w
    • c o s w t → £ s s 2 + w 2 coswt \overset{\text{\pounds}}{\rightarrow} \frac{s}{s^2+w^2} coswt£s2+w2s e − a t c o s w t → £ s + a ( s + a ) 2 + w 2 e^{-at}coswt \overset{\text{\pounds}}{\rightarrow} \frac{s+a}{(s+a)^2+w^2} eatcoswt£(s+a)2+w2s+a
    • t → £ 1 s 2 t \overset{\text{\pounds}}{\rightarrow} \frac{1}{s^2} t£s21 e − a t t → £ 1 ( s + a ) 2 e^{-at}t \overset{\text{\pounds}}{\rightarrow} \frac{1}{(s+a)^2} eatt£(s+a)21
  • 卷积积分

    • f 1 ( t ) ⊗ f 2 ( t ) → £ F 1 ( s ) ⋅ F 2 ( s ) f_1(t)\otimes f_2(t) \overset{\text{\pounds}}{\rightarrow}F_1(s)\cdot F_2(s) f1(t)f2(t)£F1(s)F2(s)
    • 把卷积,变为相乘
    • r ( t ) = e ( t ) ⊗ h ( t ) → £ R ( s ) = E ( s ) ⋅ H ( s ) r(t)=e(t)\otimes h(t) \overset{\text{\pounds}}{\rightarrow}R(s)=E(s)\cdot H(s) r(t)=e(t)h(t)£R(s)=E(s)H(s)
    • H ( s ) H(s) H(s)为网络函数。
  • 拉式变换的特点

    • 把时域问题变为复频域问题。
    • 把微分方程(线性电路,常系数微分方程)变为代数方程。

1.3 部分分式展开

  • 象函数(复频域)变换为原函数(时域)的方法
    • 拉式反变换
    • 简单形式,查表
    • 部分分式展开
  • 部分分式展开:复杂的 F ( s ) F(s) F(s)分解为多个简单项的组合。 F ( s ) = F 1 ( s ) + F 2 ( s ) + . . . + F n ( s ) → £ − 1 f ( t ) = f 1 ( t ) + f 2 ( t ) + . . . + f n ( t ) F(s)=F_1(s)+F_2(s)+...+F_n(s)\overset{\text{\pounds}^{-1}}{\rightarrow}f(t)=f_1(t)+f_2(t)+...+f_n(t) F(s)=F1(s)+F2(s)+...+Fn(s)£1f(t)=f1(t)+f2(t)+...+fn(t)
  • 部分分式展开概述
    • 通常用两个实系数的s的多项式之比来表示电路响应的象函数,有 F ( s ) = N ( s ) D ( s ) = a 0 s m + a 1 s m − 1 + . . . + a m b 0 s n + b 1 s n − 1 + . . . + b n ( m ≤ n , 正 整 数 ) F(s)=\frac{N(s)}{D(s)}=\frac{a_0s^m+a_1s^{m-1}+...+a_m}{b_0s^n+b_1s^{n-1}+...+b_n}(m≤n, 正整数) F(s)=D(s)N(s)
  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值