并联谐振电路
- 为什么要并联谐振电路?根据品质因数章节的学习我们知道,串联谐振电路的品质因数跟内阻r呈反比,r越大,品质因数越小。如果电源内阻比较大,我们又想要一个品质因数高得谐振电路怎么办?这时就可以采用并联谐振电路。
GCL并联谐振电路
概念
并联GCL电路与rLC串联电路为对偶电路。
- 并联电路总导纳为: Y = G + j ( w C − 1 w L ) = G + j B Y=G+j(wC-\frac{1}{wL})=G+jB Y=G+j(wC−wL1)=G+jB
- 调节激励的频率,使电纳B=0,当电纳为0时: B = w C − 1 w L = 0 B=wC-\frac{1}{wL} =0 B=wC−wL1=0
- 并联电路两端电压与激励同相,称发生并联谐振。
电路参数
- 谐振频率: w 0 = 1 L C ( r a d / s ) 或 f 0 = 1 2 π L C ( H z ) w_{0}=\frac{1}{\sqrt{LC}}(rad/s)或f_{0}=\frac{1}{2\pi\sqrt{LC}}(Hz) w0=LC1(rad/s)或f0=2πLC1(Hz)
- 特性阻抗: ρ = w 0 L = 1 w 0 C = L C ( Ω ) \rho=w_{0}L=\frac{1}{w_{0}C}=\sqrt{\frac{L}{C}}(Ω) ρ=w0L=w0C1=CL(Ω)
- 品质因数(电容器): Q = 2 π C U 2 U 2 G T = w 0 C G = w 0 C R = R w 0 L Q=2\pi\frac{CU^{2}}{U^{2}GT}=\frac{w_{0}C}{G}=w_{0}CR=\frac{R}{w_{0}L} Q=2πU2GTCU2=Gw0C=w0CR=w0LR
并联谐振电路的特点
- 谐振时,总导纳的模值最小 Y = G + j B 0 = G + j ( w 0 C − 1 w 0 L ) = G = 1 R Y=G+jB_{0}=G+j(w_{0}C-\frac{1}{w_{0}L})=G=\frac{1}{R} Y=G+jB0=G+j(w0C−w0L1)=G=R1
- 谐振时,端电压模值最大 U ˙ = I s ˙ Y 0 = R I s ˙ \dot{U}=\frac{\dot{I_{s}}}{Y_{0}}=R\dot{I_{s}} U˙=Y0Is˙=RIs˙
- 流过电导的电流 = 电流源电流 I G 0 ˙ = G U ˙ = G 1 G I ˙ = I s ˙ \dot{I_{G0}}=G\dot{U}=G\frac{1}{G}\dot{I}=\dot{I_{s}} IG0˙=GU˙=GG1I˙=Is˙
- 电容电流是电流源电流Is的Q倍 I C 0 ˙ = j w 0 C U ˙ = j w 0 C G I s ˙ = j Q I s ˙ \dot{I_{C0}}=jw_{0}C\dot{U}=j\frac{w_{0}C}{G}\dot{I_{s}}=jQ\dot{I_{s}} IC0˙=jw0CU˙=jGw0CIs˙=jQIs˙
- 电感电流也是电流源电流Is的Q倍,且与电容电流相位相反 I L 0 ˙ = − j 1 w 0 L U ˙ = − j R w 0 L I s ˙ = − j Q I s ˙ \dot{I_{L0}}=-j\frac{1}{w_{0}L}\dot{U}=-j\frac{R}{w_{0}L}\dot{I_{s}}=-jQ\dot{I_{s}} IL0˙=−jw0L1U˙=−jw0LRIs˙=−jQIs˙
频率响应
- 如图,以电感上电压为输出,网络函数为 H ( j w ) = U ˙ I s ˙ H(jw)=\frac{\dot{U}}{\dot{I_{s}}} H(jw)=Is˙U˙
- 它是一个带通滤波器,通频带为
B
=
w
0
Q
=
G
C
=
1
R
C
(
r
a
d
/
s
)
B=\frac{w_{0}}{Q}=\frac{G}{C}=\frac{1}{RC}(rad/s)
B=Qw0=CG=RC1(rad/s)
- Q值越大, 曲线越尖锐,选频特性越好,带宽越窄。
简单RLC并联谐振电路
- 如图,将实际电感与实际电容并联(电容相对电感耗能非常小,其电阻可以忽略),构成电路。
- 总导纳: Y = 1 r + j w L + j w C = r r 2 + ( w L ) 2 + j [ w C − w L r 2 + ( w L ) 2 ] Y=\frac{1}{r+jwL}+jwC=\frac{r}{r^{2}+(wL)^{2}}+j[wC-\frac{wL}{r^{2}+(wL)^{2}}] Y=r+jwL1+jwC=r2+(wL)2r+j[wC−r2+(wL)2wL]
- 当电感的品质因数Q=wL/r较高,即r<<(wL)时,上式可以近似于 Y ≈ r ( w L ) 2 + j ( w C − 1 w L ) = G + j ( w C − 1 w L ) Y\approx \frac{r}{(wL)^{2}}+j(wC-\frac{1}{wL})=G+j(wC-\frac{1}{wL}) Y≈(wL)2r+j(wC−wL1)=G+j(wC−wL1)
- 在谐振频率附近,W=Wo时,此时只剩下实部
G
=
1
R
=
r
(
w
L
)
2
≈
r
(
w
0
L
)
2
=
C
r
L
G=\frac{1}{R}=\frac{r}{(wL)^{2}} \approx\frac{r}{(w_{0}L)^{2}}=\frac{Cr}{L}
G=R1=(wL)2r≈(w0L)2r=LCr
- 将简单实用谐振电路等效为并联谐振电路,并联电阻为 R = L C r R=\frac{L}{Cr} R=CrL
- 等效电路如图
- 电路参数
- 条件: r < < w 0 L r<<w_{0}L r<<w0L
- 谐振频率: w 0 = 1 L C w_{0}=\sqrt{\frac{1}{LC}} w0=LC1
- 谐振阻抗: Z 0 = R = L C r Z_{0}=R=\frac{L}{Cr} Z0=R=CrL
- 品质因数: Q = w 0 C R = R w 0 L = w 0 L r Q=w_{0}CR=\frac{R}{w_{0}L}=\frac{w_{0}L}{r} Q=w0CR=w0LR=rw0L
基于Multisim的RLC并联电路仿真分析
- 电流源与电阻R并联可以使用电压源与电阻R串联来等效。
- 当电路发生谐振时,电容上的电流与电感上的电流值相等,方向相反。
- 此时的幅频特性图