电路-并联谐振电路分析

并联谐振电路

  • 为什么要并联谐振电路?根据品质因数章节的学习我们知道,串联谐振电路的品质因数跟内阻r呈反比,r越大,品质因数越小。如果电源内阻比较大,我们又想要一个品质因数高得谐振电路怎么办?这时就可以采用并联谐振电路。

GCL并联谐振电路

概念

在这里插入图片描述
并联GCL电路与rLC串联电路为对偶电路。

  • 并联电路总导纳为: Y = G + j ( w C − 1 w L ) = G + j B Y=G+j(wC-\frac{1}{wL})=G+jB Y=G+j(wCwL1)=G+jB
  • 调节激励的频率,使电纳B=0,当电纳为0时: B = w C − 1 w L = 0 B=wC-\frac{1}{wL} =0 B=wCwL1=0
  • 并联电路两端电压与激励同相,称发生并联谐振。

电路参数

  • 谐振频率: w 0 = 1 L C ( r a d / s ) 或 f 0 = 1 2 π L C ( H z ) w_{0}=\frac{1}{\sqrt{LC}}(rad/s)或f_{0}=\frac{1}{2\pi\sqrt{LC}}(Hz) w0=LC 1(rad/s)f0=2πLC 1(Hz)
  • 特性阻抗: ρ = w 0 L = 1 w 0 C = L C ( Ω ) \rho=w_{0}L=\frac{1}{w_{0}C}=\sqrt{\frac{L}{C}}(Ω) ρ=w0L=w0C1=CL (Ω)
  • 品质因数(电容器): Q = 2 π C U 2 U 2 G T = w 0 C G = w 0 C R = R w 0 L Q=2\pi\frac{CU^{2}}{U^{2}GT}=\frac{w_{0}C}{G}=w_{0}CR=\frac{R}{w_{0}L} Q=2πU2GTCU2=Gw0C=w0CR=w0LR

并联谐振电路的特点

  • 谐振时,总导纳的模值最小 Y = G + j B 0 = G + j ( w 0 C − 1 w 0 L ) = G = 1 R Y=G+jB_{0}=G+j(w_{0}C-\frac{1}{w_{0}L})=G=\frac{1}{R} Y=G+jB0=G+j(w0Cw0L1)=G=R1
  • 谐振时,端电压模值最大 U ˙ = I s ˙ Y 0 = R I s ˙ \dot{U}=\frac{\dot{I_{s}}}{Y_{0}}=R\dot{I_{s}} U˙=Y0Is˙=RIs˙
  • 流过电导的电流 = 电流源电流 I G 0 ˙ = G U ˙ = G 1 G I ˙ = I s ˙ \dot{I_{G0}}=G\dot{U}=G\frac{1}{G}\dot{I}=\dot{I_{s}} IG0˙=GU˙=GG1I˙=Is˙
  • 电容电流是电流源电流Is的Q倍 I C 0 ˙ = j w 0 C U ˙ = j w 0 C G I s ˙ = j Q I s ˙ \dot{I_{C0}}=jw_{0}C\dot{U}=j\frac{w_{0}C}{G}\dot{I_{s}}=jQ\dot{I_{s}} IC0˙=jw0CU˙=jGw0CIs˙=jQIs˙
  • 电感电流也是电流源电流Is的Q倍,且与电容电流相位相反 I L 0 ˙ = − j 1 w 0 L U ˙ = − j R w 0 L I s ˙ = − j Q I s ˙ \dot{I_{L0}}=-j\frac{1}{w_{0}L}\dot{U}=-j\frac{R}{w_{0}L}\dot{I_{s}}=-jQ\dot{I_{s}} IL0˙=jw0L1U˙=jw0LRIs˙=jQIs˙

频率响应

在这里插入图片描述

  • 如图,以电感上电压为输出,网络函数为 H ( j w ) = U ˙ I s ˙ H(jw)=\frac{\dot{U}}{\dot{I_{s}}} H(jw)=Is˙U˙
  • 它是一个带通滤波器,通频带为 B = w 0 Q = G C = 1 R C ( r a d / s ) B=\frac{w_{0}}{Q}=\frac{G}{C}=\frac{1}{RC}(rad/s) B=Qw0=CG=RC1(rad/s)
    在这里插入图片描述
  • Q值越大, 曲线越尖锐,选频特性越好,带宽越窄。

简单RLC并联谐振电路

在这里插入图片描述

  • 如图,将实际电感与实际电容并联(电容相对电感耗能非常小,其电阻可以忽略),构成电路。
  • 总导纳: Y = 1 r + j w L + j w C = r r 2 + ( w L ) 2 + j [ w C − w L r 2 + ( w L ) 2 ] Y=\frac{1}{r+jwL}+jwC=\frac{r}{r^{2}+(wL)^{2}}+j[wC-\frac{wL}{r^{2}+(wL)^{2}}] Y=r+jwL1+jwC=r2+(wL)2r+j[wCr2+(wL)2wL]
  • 当电感的品质因数Q=wL/r较高,即r<<(wL)时,上式可以近似于 Y ≈ r ( w L ) 2 + j ( w C − 1 w L ) = G + j ( w C − 1 w L ) Y\approx \frac{r}{(wL)^{2}}+j(wC-\frac{1}{wL})=G+j(wC-\frac{1}{wL}) Y(wL)2r+j(wCwL1)=G+j(wCwL1)
  • 在谐振频率附近,W=Wo时,此时只剩下实部 G = 1 R = r ( w L ) 2 ≈ r ( w 0 L ) 2 = C r L G=\frac{1}{R}=\frac{r}{(wL)^{2}} \approx\frac{r}{(w_{0}L)^{2}}=\frac{Cr}{L} G=R1=(wL)2r(w0L)2r=LCr
    在这里插入图片描述
  • 将简单实用谐振电路等效为并联谐振电路,并联电阻为 R = L C r R=\frac{L}{Cr} R=CrL
  • 等效电路如图
    等效电路
  • 电路参数
    • 条件: r < < w 0 L r<<w_{0}L r<<w0L
    • 谐振频率: w 0 = 1 L C w_{0}=\sqrt{\frac{1}{LC}} w0=LC1
    • 谐振阻抗: Z 0 = R = L C r Z_{0}=R=\frac{L}{Cr} Z0=R=CrL
    • 品质因数: Q = w 0 C R = R w 0 L = w 0 L r Q=w_{0}CR=\frac{R}{w_{0}L}=\frac{w_{0}L}{r} Q=w0CR=w0LR=rw0L

基于Multisim的RLC并联电路仿真分析

  • 电流源与电阻R并联可以使用电压源与电阻R串联来等效。
    在这里插入图片描述
  • 当电路发生谐振时,电容上的电流与电感上的电流值相等,方向相反。
  • 此时的幅频特性图
    在这里插入图片描述
    在这里插入图片描述
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值